Genetic diversity of *Ligula intestinalis* (L.) (Cestoda: Diphyllobothriidea) based on analysis of inter-simple sequence repeat markers

W. BOUZID1, 2, S. LEB1, M. MACE1, O. B. HASSINE2, R. ETIENNE1, L. LEGAL3 and G. LOOT1

Abstract

In order to investigate the genetic diversity of *Ligula intestinalis* populations, nine inter-simple sequence repeat (ISSR) markers were applied to populations from nine geographical areas around the world and 10 host species. The 110 loci selected from the ISSR patterns produced revealed high variability among the analysed samples, with a polymorphism of 100% and a global coefficient of gene differentiation estimated by Nei's index (GS1) of 0.776. Major genetic differentiation was found to be correlated to five broad geographical regions (Europe, China, Canada, Australia and Algeria). Nevertheless, no significant genetic variation was found among European isolates, although they originated from disparate geographical localities and/or unrelated hosts. Classical classification methods: maximum parsimony and factorial correspondence analysis were compared with an advanced statistical method: the self-organizing map (SOM). The results demonstrated that the ISSR approach is rapid and inexpensive and provides reliable markers to assess genetic diversity of *L. intestinalis*. Furthermore, SOM artificial neuronal networks are considered to provide an efficient alternative tool for mapping the genetic structures of parasite populations.

Key words: inter-simple sequence repeat – self-organizing map – genetic diversity – parasite clustering – *Ligula intestinalis*

Introduction

Host–parasite systems provide useful models for studying evolutionary problems (Price 1980; De Meeus et al. 1998; Paterson and Banks 2001). However, most studies failed to show clear coevolutionary patterns, suggesting that consideration should also be given to the history of colonization and secondary patterns of dispersal simultaneously (Hoberg 1997; Wickström et al. 2003). The development of the molecular tools in the past decades has stimulated systematic researches. Nevertheless, work concerning the parasites is far from being at the level of that of the hosts, especially, as the use of the molecular data for the study of the phylogenetic relationships and the genetic characterization of the populations of parasites were largely limited to the species being of medical or economic interest (Poulin and Morand 2000). Although a fair number of genes has been used to study parasitic phylogeny (Olson and Tkach 2005), far less has been done to develop population-level markers.

In this study, we examined the genetic diversity of the parasite *Ligula intestinalis* Linnaeus, 1758, which undergoes a complex life cycle through three different hosts: a planktonic copepod (first intermediate host), a freshwater fish (second intermediate host) and a piscivorous bird, which represent the definitive host (Rosen 1918). In the parasite life cycle, the plerocercoid stage inside the fish host is the longest stage (up to 2 years) and may cause castration, modify growth rate and behaviour, and induce mortality in natural fish populations (Orr 1966; Dubinin 1980; Loot et al. 2002a; b). The parasite is more commonly encountered and sampled in the larval stage, and hence, morphological studies are not possible, as they are done on adult reproductive complexes or fully developed plerocercoids. Moreover, few number of morphological characteristics are available for species identification (Dubinin 1980).

Ligula intestinalis (L.) has been reported from a broad range of fish families, such as Cyprinidae, Catostomidae, Salmonidae or Galaxiidae (e.g. Dubinin 1980; Bean and Winfield 1992; Groves and Shields 2001; Museth 2001; Barus and Prokes 2002; Chapman et al. 2006). However, these available records show a conspicuous heterogeneity in host preference according to the geographical area studied. For instance, in South-West France, it has been demonstrated that *L. intestinalis* is highly restricted to roach populations (*Rutilus rutilus* Linnaeus, 1758), where other known potential hosts co-exist in the same locality (Loot et al. 2002). In its adult phase, the parasite seems to be less specific to its final host (bird) (Dubinin 1980). Indeed, several families of bird eating fish are potential hosts for *Ligula* (e.g. Phalacrocoracidae, Podicipedidae, Ardeidae, Laridae).

Given the extensive host and geographic ranges of this parasite, distinct strains/species are supposed to exist. Indeed, recent studies support such a view by the recovery of genetically distinct plerocercoid isolates (Olson et al. 2002; Li and Liao 2003; Logan et al. 2004). For instance, Olson et al. (2002) used the entire ITS region and the partial ribosomal 28S and found reliable genetic differences of *Ligula* populations between two sympatric fish hosts, namely roach (*R. rutilus*) and the gudgeon (*Gobio gobio* Linnaeus, 1758) in Northern Ireland. Differences in pathogenic owing to *Ligula* infection between these two sympatric fish hosts were also reported (Arme 1997). Facing the putative biological complexity of *L. intestinalis* plerocercoids, the lack of adequate molecular data and comprehensive sampling has been highlighted by a number of authors (Logan et al. 2004; Stetka et al. 2007).

In the present study, we explored the usefulness of inter-simple sequence repeat (ISSR) markers to determine the genetic relationship of several morphologically indistinguishable *Ligula* plerocercoid specimens. The polymerase chain reaction (PCR)–ISSR is a relatively novel technique used to screen a large part of the genome without prior knowledge of sequences. The method provides highly reproducible results and generates abundant polymorphisms in many systems. It is
proven to be efficient in distinguishing between populations and closely related species (Zietkiewicz et al. 1994; Robinson et al. 1997; Wolfe et al. 1998a; b; Hundsdorfer and Wink 2006; Maltagliati et al. 2006). Although the approach has limitations like almost all dominant markers in terms of di allelic interpretation of generated fingerprinting (Wolfe and Liston 1998), yet it has the advantage of being technically simple to perform compared with some other molecular approaches. Furthermore, it overcomes some of the constraints of random amplified polymorphic DNA (RAPD) by using longer primers, allowing more stringent annealing temperatures. In addition, the target regions by ISSR yield higher polymorphism and reproducibility (Fang and Roose 1997; Luque et al. 2002; Wu et al. 2003). Among other advantages, the short time required to obtain results and the highly informative nature were noted (Graham et al. 1994).

This ISSR technique has been used mainly for the assessment of relationships between plant species and populations (Huang and Sun 2000; Joshi et al. 2000; Lanham et al. 2000; Treutlein et al. 2003a,b, 2005; Gobert et al. 2006). To date, its application to parasites has been limited to Trypanosoma cruzi, Schistosoma mansoni, Leishmania braziliensis and Trichinella genotypes (Oliveira et al. 1997; Gomes et al. 1998; Fonseca-Salamanca et al. 2006). To our knowledge, ISSR has not been applied to cestodes, although Oliveira et al. (1997) indicated that it should be included in the ‘toolbox’ for epidemiological studies, particularly for analyses of genetic variability. According to Behura (2006), the ISSR technique represents one of the most promising tools in population genetic studies and deserves increased attention (Esselman et al. 1999). However, the relevance of this approach for phylogenetic studies has been discussed, particularly when comparing genera, tribes or families (Simmons et al. 2007).

Traditional statistical methods, such as the unweighted pair-group method with arithmetic averages (UPGMA) is most of the time used for reconstructions based on multilocus DNA markers (Mace et al. 1999; Koopman et al. 2001). Nevertheless, this method has the bias of being sample-order dependent and can have the limitation, when applied to evolutionary processes, that there is no search for an optimal tree. Therefore, alternative methods are being increasingly sought or used in order to achieve more confidence in data processing and results. Among these, artificial neural networks (ANN), and in particular, Kohonen self-organizing maps (SOM) have been used extensively in biological research for pattern recognition and may provide an alternative to conventional statistical methods because they detect non-linear relationships, allow the visualization of complex data and remain robust despite experimental variation. Phylogenetic reconstruction, classification of proteins and genomic analysis are a few applications of SOM in molecular biology. Ecological applications for SOM are also being explored for classification and modelling of populations and ecosystems (Lek 2000; Park et al. 2003). To our knowledge, only a few recent studies have used SOM for genetic data, particularly for multilocus molecular analyses (Giraudel et al. 2000; Ruanet et al. 2005; Zhao et al. 2005; Roux et al. 2007).

The aims of the present study were: (i) to assess the genetic variability of *L. intestinalis* plerocercoids from different hosts and geographical regions; (ii) to support or to invalidate the existence of a complex of species represented by *L. intestinalis*; and (iii) to assess the usefulness of a recent, non-linear statistical approach, the SOM, as an alternative clustering method to the traditional approaches of maximum parsimony (MP) and factorial correspondence analysis (FCA).

Materials and Methods

DNA extraction

In order to assess the genetic diversity of *L. intestinalis* populations, a total of 159 specimens were collected from a range of countries and from different fish species. Details of location and host fish range are given in Table 1. Genomic DNA was extracted by small-scale sodium-dodecyl-sulphate (SDS)-proteinase K digestion of 10–20 mg of *Ligula* larval tissue (either ethanol fixed or fresh/frozen) and column-purification (DNA Clean-Up kit; Promega, Madison, WI, USA).

ISSR–PCR amplification

The PCR was carried out in a volume of 20 μl consisting of 20 ng of genomic DNA template, 2 μl of MgCl₂ (15 mM), 2 μl of dNTP (10 mM), 2 μl of primer (50 μM), 0.25 U Taq DNA polymerase (M166A; Promega) and 2 μl of Taq DNA polymerase buffer (10 mM Tris-HCl, pH 9.0, 50 mM KCl and 0.1% Triton® X-100). Cycling was performed in a T3 thermocycler Biometra with the following assay conditions: 4 min at 94°C; 39 cycles of 45 s at 94°C, 45 s at the annealing temperature depending on the primer used (see Table S1 in the supplemental material), 2 min at 72°C and a final extension of 10 min at 72°C.

In this study, we tested a range of nine primers (Table S1). The annealing temperature of each primer was optimized by testing several temperatures between 50 and 60°C using a Mastercycler Gradient thermocycler (Eppendorf, Hamburg, Germany). The selection of optimal annealing temperatures is central to achieving optimum profile quality and reproducibility of ISSR fingerprints.

In order to test the reproducibility of ISSR, the patterns of 15 *L. intestinalis* DNA samples were tested three times on three different days using the same primers. Electrophoresis was performed on 2% agarose gels in 1 × TAE. The gels sized 9 × 11 cm (Apelex) were stained with ethidium bromide and the run time (about 3 h) was kept constant between gels at 110 V. Digital images of banding patterns were captured over ultraviolet light using a camera supported by BIO-capt 97.03 (Wilber Lourmut, Marne-la-valleé, France).

Analyses of molecular data

Only bands which displayed reproducibility on multiple independent runs were considered. The intensity of the bands was not taken into account for general scoring. They were scored qualitatively as present (1) or absent (0), and both polymorphic and monomorphic bands were considered in the final data set. Binary data from all retained primers were gathered to perform the analysis with samples on the rows and markers on the columns.

We used the resultant presence/absence matrix, under the Hardy–Weinberg equilibrium to calculate the percentage of polymorphic bands (P), Shannon’s information index (I) (Lewontin 1972), Nei’s total gene diversity (Hs), Nei’s gene diversity within each population (He), Nei’s gene diversity among populations (Hs) and the coefficient of gene differentiation (GST). The latter parameters were examined for the five populations of the European group, including samples from Tunisia. Nei’s genetic identity (I) and genetic distance (D) were examined for all pairwise comparisons between populations. All these parameters were calculated using the program POPGENE version (Yeh et al. 1997).

Genetic differentiation between and among populations was assessed by analysis of molecular variance analysis (AMOVA) using the software package Arlequin 3.00 (Schneider et al. 2000). AMOVA was carried out using a matrix of Euclidean distances with 10 000 permutations. Analyses were conducted in a hierarchical framework; populations from the same geographical origin were defined as specimens belonging to the same group (e.g. all samples from Australia were gathered in the same group regardless of their sampling locality or host species). The AMOVA hierarchy consisted of five groups...
and according to a close similarity in their ISSR pattern with
present study
63
60
57
54
51
48
45
42
39
36
33
30
27
24
21
18
15
12
9
6
3

(63) and according to a close similarity in their ISSR pattern with
populations of European group. However, we also carried out AMOVA
analysis where Tunisian population was treated as one independent
group.

Parsimony-based analyses
All analyses were performed on Paup 4b10 (Swofford 2001). Starting
trees were obtained by stepwise addition. We checked that random
addition of taxa did not lead to alternate more parsimonious trees. All
heuristic searches for optimal trees were carried out by tree bissection–
reconnection (TBR) branch swapping with option MULPARS in
effect.

Goloboff’s method was applied (constant \(k = 4 \) and 500 replicates)
(Goloboff 1993). In this non-iterative approach to homoplasy-based
weighted parsimony, a tree is sought that maximizes the sum of the
weights of individual sites. Consensus tree was obtained on a majority
rule with a 50% limit.

Bootstrap values are calculated under the same criteria including
Goloboff correction. Only 100 repeats were performed as the calcula-
tion was time consuming with such parameters (72 h for 100 repeats).

Tree was displayed using TreeView 1.5 software (Page 1996). The
binary data from the ISSR fingerprinting was also subjected to FCA
implemented in R software (Ihaka and Gentleman 1996).

SOM
A fundamentally new method of genetic polymorphism estimation
using ANN technologies, namely SOM, was employed. Selected articles
describe the details of the SOM algorithm (Chon et al. 1996; Kohonen
2001) and its applications (Lek 2000; Park et al. 2003); functions used
herein are from the SOM toolbox (http://www.cis.hut.fi/projects/
somtoolbox/) operating in a Matlab environment (MathWorks 2001).
This powerful and adaptive ANN method uses an unsupervised
learning algorithm that is efficient in modelling complex non-linear
relationships. The aim of SOM is to perform a non-linear projection of
the multi-dimensional data space onto 2D space called the Kohonen
map (Kohonen 1982, 2001). It has the properties of neighbourhood
preservation of the input data. The algorithm consists of two layers:

1. An input layer formed by a set of units called neurons associated
with a vector (x) represented by the samples of the data, previously
randomly mixed. There are as many neurons in this layer as elements
in the samples.

2. An output layer formed by a set of neurons represented most of
the time by a hexagonal grid (i.e. the Kohonen map).

The two layers are connected by weights (W) between neurons of
the output layer and neurons of the input layer. The distance between
the weights and input vectors is computed using Euclidian distance. The
neuron that has competed with all neurons of the output layer for
which the distance was minimal is the winner. This winning neuron
called the “best matching unit” (BMU) is selected with its neighbours,
whose size is defined with a neighbourhood function, and is updated
during the learning process.

The learning process trains the network to pattern the input vectors
and is stopped, usually when weight vectors stabilize or when the
number of iterations are completed (Kohonen 2001).

The SOM learning rule is summarized as follows:

\[W(t+1) = W(t) + \alpha(t) h_{ij}(t) x(t) - W(t) \]

\[W(t): \text{ weight between neuron } i \text{ in the input layer and neuron } j \text{ in the output layer in an iteration time } t \]

\[\alpha(t): \text{ learning-rate factor which is a decreasing function of the iteration time } t \]

\[h_{ij}: \text{ a function that defines the neighbourhood size of the winning neuron } c \]

Journal compilation © 2008 Blackwell Verlag, Berlin
In this study, SOM was trained with different number of output neurons in order to select the optimum Kohonen map to classify the samples. A topographic error is computed for each map as an indicator of the topology preservation. SOM preserves the neighbourhood so that the samples classified in the same output neuron are considered similar. Moreover, the samples that are neighbours on the map are also expected to be more similar to each other.

The selected Kohonen map was then subdivided into different groups by using a hierarchical cluster analysis. To do this, the weight vectors associated with each output neuron of the trained Kohonen map were used.

Finally, to test whether there is a statistically significant difference between the groups defined by the hierarchical cluster analysis, an analysis of similarity (anosim) (Clarke 1993) was performed between each pair of groups. This test involves a dissimilarity matrix in which the distances have been converted to ranks such that the smallest distance has a rank (r) of 1. The dissimilarity matrix was computed by using data on the presence or absence of 110 loci.

The anosim statistics R is based on the difference of mean ranks between groups (rB) and within groups (rW):

\[R = \frac{(r_B - r_W)}{\sqrt{N(N-1)/4}} \]

N = total number of individuals

The anosim statistics R range from 0 to 1. A 0 indicates that there is no difference between groups (i.e. the null hypothesis), while a 1 indicates that all samples within groups are more similar to one another than any samples from different groups (Clarke 1993). The statistical significance of observed R is assessed by permuting the grouping vector (1000 permutations) to obtain the empirical distribution of R under the null hypothesis (Ihaka and Gentleman 1996).

Results

Genetic structure and diversity

A PCR-based ISSR analysis was performed using nine primers; only four primers yielded polymorphism and defined profiles (or phenotypes, which we refer to as ‘genotype’ henceforth) (Table S1). A total of 110 reliable bands were recorded for the 159 Ligula samples. The size of the bands displayed ranged from 250 to 1500 bp (Fig. 1). The four primers provided different patterns and number of bands but gave almost the same percentage of polymorphism. The number of scored bands were 24, 26, 29 and 31 fragments for WB, (GACA), (GACA)WB, (ACA)BDB and BDB(A-CA), respectively.

The total polymorphism (P) scored between populations from different geographical regions was 100%, whereas less polymorphism was detected among individuals within each group. Individuals from China showed the highest polymorphism (55.45%), whereas individuals from Germany showed the lowest rate (4.55%) (see Table S2 in the supplemental material). The total gene diversity (Ht) was 0.293 ± 0.019, gene diversity within populations (Hs) was 0.065 ± 0.003, and the global coefficient of gene differentiation (Gst) was 0.776. For the European group, the global coefficient of gene differentiation (Gst) was 0.230. Nei’s gene diversity within each population (He) and Shannon’s index (i) are summarized in Table S2.

Nei’s genetic identity (I) ranged from 0.525 to 0.999 (see Table S3 in the supplemental material). Genetic distances (D) among specimens from European and Tunisian origin were minimal (Table S3). These specimens belong however to different locations and/or different host species (Table 1).

The distances in the European-Tunisian group varied from 0.0002 between French and Czech populations to 0.0294 between German and Russian ones (Table S3). Genetic distances were high between European, Chinese, Algerian, Australian and Canadian populations. The Chinese population had the greatest genetic distances from all other countries.

The hierarchical AMOVA analysis provided additional evidence for the geographical genetic structure between European, Chinese, Algerian, Australian and Canadian groups. Highly significant genetic differences were detected among these five groups (83.06%, D.F. = 4, p = 0.00891). A very low variability was expressed among populations within groups (0.41%, D.F. = 4, p = 0.00129). Finally, a low variation within populations was found (16.53%, D.F. = 150, p = 10-5). AMOVA analysis considering Tunisian population as one separate group from Europe was not significant among groups (78.79%, D.F. = 5, p = 0.03119).

Clustering

Relationships displayed by MP clustering and FCA were concordant and showed clearly structured relationships among groups of Ligula specimens. Five main clusters were defined for the 10 populations included in this study (Fig. 2a,b). The MP tree showed a divergence of groups, with a clear differentiation between analysed populations from China, Canada, Australia, and Algeria. The tree grouped all the five European populations in the same clade with Tunisian individuals also belonging to this group.

The MP showed a well-defined clustering of the European group, whereas the Chinese one seems to be paraphyletic and structured as an important radiation.

Data on the presence or absence of 110 loci were presented to the input layer of the SOM (as input data set). A Kohonen map with 63 output neurons (i.e. a map of 9 × 7 neurons) was used and provided the best classification resolution of the studied samples (Fig. 3a) with low value of final topographic error (0.001). A hierarchical clustering analysis applied on the Kohonen map allowed the identification of five groups on the map. These groups were concordant with the geographic location of the samples, i.e. Europe-Tunisia, Australia, Algeria, Canada and China (Fig. 3b). The anosim test computed for all pairwise comparisons revealed that these five groups differed significantly p < 0.001 (see Table S4 in the supplemental
This confirms the genetically high differences between these groups.

According to the hierarchical cluster analysis, the samples from Europe and Tunisia were grouped into the same cluster. These samples could be further divided into two groups (Fig. 3b). However, the ANOSIM test revealed that these two groups did not differ significantly ($R = 0.02$, $p > 0.05$).

Discussion

The five geographical groups inferred from MP, FCA and SOM methods based on ISSR markers indicated a strong genetic discrimination between the analysed specimens. This finding was not surprising regarding the broad geographical range represented. The isolation of populations owing to glacial barriers has often been proposed to explain genetic differentiation between large geographical areas (Hewitt 2000). Additionally, such patterns could be maintained by isolation by distance.

Genetic variation among populations ($G_{ST} = 0.776$) and the level of polymorphism (100%) raise the evidence of the existence of distinct genetic isolates of *L. intestinalis* and support the presence of a complex of closely related species. Indeed, ISSR-PCR approach was shown to be suitable to study inter-specific variation in very close species (Luque et al. 2002). The present data demonstrated low intra-population genetic variability within the groups. This could be attributed to a recent origin of *Ligula* lineages and short differentiation times as explained previously by Li et al. (2000), even though ISSR consists mainly of non-coding DNA where fixation rates of mutation are higher than in coding regions (Kimura 1980). Low genetic variability could also be explained by the self-fertilization of the Cestoda, as described for numerous hermaphroditic parasites (Brown et al. 2001).
In conclusion, it is proposed that the ISSR approach provides valuable markers to discriminate genetic distant Ligula specimens and SOM shows considerable promise as a rapid method to map the genetic structure of parasite populations, thus complementing conventional methods.

Acknowledgements

The authors would like to thank J. Stefa, T. Sholtz, A. Arab, S. Thabet, N. Haddaoui, S. Frank and A. Lymbery for providing parts of Ligula samples and Z.J. Shao, C. Shinn and P. Winterton for English correction of the manuscript.

Résumé

Diversité génétique du parasite Ligula intestinalis (Cestode: Diphyllobothriidea) basée sur l’analyse des marqueurs des répétitions intermicrosatellites (ISSR)

Dans cette étude nous avons analysé la variabilité génétique de différentes populations de Ligula intestinalis. Pour cela, 9 marqueurs des répétitions intermicrosatellites (ISSR) ont été sélectionnés et appliqués à des échantillons collectés dans 9 régions géographiques du monde et dans 10 espèces hôtes. Les patrons ISSR ont généré 110 loci et montrent une forte variabilité avec un polymorphisme de 100% et un coefficient global de différenciation de géné estimé par l’indice de Nei (Gst) de 0.776. Nous trouvons une forte différenciation génétique entre 5 groupes qui correspondent à 5 larges régions géographiques (Europe, Chine, Canada, Australie et Algérie). Néanmoins aucune variation génétique significative n’a été retrouvée parmi les échantillons Européens, bien qu’ils soient originaires de différentes localités géographiques et/ou de différents hôtes. Les méthodes de classification classique : Maximum de paracimonie (MP) et l’Analyse Factorielle de Correspondance (AFC) ont été comparées avec une méthode statistique récente : les cartes auto-organisatrices (SOM). Les résultats montrent que l’approche ISSR que nous avons utilisée fournit des marqueurs fiables capables de discriminer entre différentes populations de Ligula. Les SOM représentent un outil alternatif efficace pour établir la structure génétique des populations de parasites.
References

Schneider S, Roessli D, Excoffier L (2000) A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

Ye FC, Yang RC, Boyle TBJ, Ye ZH, Mao IX (1997) ??????. Molecular Biology and Biotechnology center, University of Alberta (1.32).

Authors’ addresses: Wafa Bouzid, Laboratoire Evolution et Diversité Biologique, UMR CNRS-UPS 5174, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 4, France. E-mail: bouzid@cict.fr; Sovan Lek, Laboratoire Evolution et Diversité Biologique, UMR CNRS-UPS 5174, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 4, France. E-mail: lek@cict.fr; Matthias Mace, Laboratoire Evolution et Diversité Biologique, UMR CNRS-UPS 5174, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 4, France. E-mail: Matthias.Mace@wanadoo.fr; Oum Kalthoum Ben Hassine, Unité de Recherche, Biologie, Ecologie et Parasitologie des Organismes Aquatiques, Faculté des Sciences, 1060 Tunis, Tunisie. E-mail: kalthoum.-benhassine@gmail.com; Roselyne Etienne, Laboratoire Evolution et Diversité Biologique, UMR CNRS-UPS 5174, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 4, France. E-mail: etienne@cict.fr; Luc Legal, ECOLAB, UMR CNRS-UPS 5245, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse cedex 4, France. E-mail: legal@cict.fr; Gérardine Loot, Laboratoire Evolution et Diversité Biologique, UMR CNRS-UPS 5174, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 4, France. E-mail: loot@cict.fr

Supplementary material

The following supplementary material is available for this article:

Table S1. Oligonucleotide primers used in the polymerase chain reaction-based inter-simple sequence repeat and their annealing temperatures

Table S2. Details of genetic variability for the 10 Ligula intestinalis populations studied

Journal compilation © 2008 Blackwell Verlag, Berlin
Table S3. Nei's measures of genetic identity (θ) (above diagonal) and genetic distance (D) (below diagonal) for all pairwise comparisons between populations.

Table S4. Results of the ANOSIM test for all pairwise comparisons between five groups.

This material is available as part of the online article from: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1439-0469.2008.00471.x

(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Au: Please provide a minimum of six key words. There are only five.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Au: Please mention if Loot et al. 2002a or b.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Au: Please check, Matalgliati has been changed to Maltagliati so that it matches the list.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Au: Please define TAE.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Au: Please provide the manufacturer details: town, state (if in USA) and country.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Au: Losse 1991 has been changed to Losse et al. 1991 so that this citation matches the list.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Au: Please cite Giraudel and Lek 2001 in text or delete from list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Au: Please provide the place of publication in Lek 2000.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Au: Please provide the place of publication.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Au: Please provide the place of publication.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Au: Please provide book title.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Au: ALL figures are in low resolution and unsuitable for printing. Please supply a replacement high-resolution figure file. For detailed information on digital illustrations please see the Blackwell Publishing Illustration Submission guidelines homepage at http://www.blackwellpublishing.com/bauthor/illustration.asp</td>
<td></td>
</tr>
</tbody>
</table>
Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

<table>
<thead>
<tr>
<th>Instruction to printer</th>
<th>Textual mark</th>
<th>Marginal mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave unchanged</td>
<td>⋱ ⋱ under matter to remain</td>
<td>₁</td>
</tr>
<tr>
<td>Insert in text the matter indicated in the margin</td>
<td>/ through single character, rule or underline or ‐‐‐ through all characters to be deleted</td>
<td>₁ or ₁ Ø</td>
</tr>
<tr>
<td>Delete</td>
<td>/ through letter or ‐‐‐ through characters</td>
<td>/ or /</td>
</tr>
<tr>
<td>Substitute character or substitute part of one or more word(s)</td>
<td>/ through letter or ‐‐‐ through characters</td>
<td>new character / or new characters /</td>
</tr>
<tr>
<td>Change to italics</td>
<td>— under matter to be changed</td>
<td>₂</td>
</tr>
<tr>
<td>Change to capitals</td>
<td>≈ under matter to be changed</td>
<td>≈</td>
</tr>
<tr>
<td>Change to small capitals</td>
<td>≈ under matter to be changed</td>
<td>≈</td>
</tr>
<tr>
<td>Change to bold type</td>
<td>≈ under matter to be changed</td>
<td>≈</td>
</tr>
<tr>
<td>Change to bold italic</td>
<td>Encircle matter to be changed</td>
<td>≈</td>
</tr>
<tr>
<td>Change to lower case</td>
<td>(As above)</td>
<td>≈</td>
</tr>
<tr>
<td>Change italic to upright type</td>
<td>(As above)</td>
<td>¶ or ¶</td>
</tr>
<tr>
<td>Change bold to non-bold type</td>
<td>(As above)</td>
<td>¶ or ¶</td>
</tr>
<tr>
<td>Insert ‘superior’ character</td>
<td>/ through character or ′ where required</td>
<td>′ or ′</td>
</tr>
<tr>
<td>Insert ‘inferior’ character</td>
<td>(As above)</td>
<td>′ or ′</td>
</tr>
<tr>
<td>Insert full stop</td>
<td>(As above)</td>
<td>¶</td>
</tr>
<tr>
<td>Insert comma</td>
<td>(As above)</td>
<td>¶ or ¶ and/or ¶</td>
</tr>
<tr>
<td>Insert single quotation marks</td>
<td>(As above)</td>
<td>¶ or ¶ and/or ¶</td>
</tr>
<tr>
<td>Insert double quotation marks</td>
<td>(As above)</td>
<td>¶ or ¶ and/or ¶</td>
</tr>
<tr>
<td>Insert hyphen</td>
<td>(As above)</td>
<td>¶</td>
</tr>
<tr>
<td>Start new paragraph</td>
<td>(As above)</td>
<td>¶</td>
</tr>
<tr>
<td>No new paragraph</td>
<td>(As above)</td>
<td>¶</td>
</tr>
<tr>
<td>Transpose</td>
<td>(As above)</td>
<td>¶</td>
</tr>
<tr>
<td>Close up</td>
<td>linking characters</td>
<td>¶</td>
</tr>
<tr>
<td>Insert or substitute space between characters or words</td>
<td>/ through character or ′ where required</td>
<td>′ or ′</td>
</tr>
<tr>
<td>Reduce space between characters or words</td>
<td>between characters or words affected</td>
<td>′</td>
</tr>
</tbody>
</table>

(As above)