
Ecological Modelling 120 (1999) 349–358

Use of artificial neural networks for predicting rice crop
damage by greater flamingos in the Camargue, France
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Abstract

Since the 1980s, incursions of greater flamingo (Phoenicopterus ruber roseus) in rice fields have been reported almost
every year in the Camargue, south-eastern France, and more recently in Spain. We assessed the performances of
artificial neural networks (ANN) in predicting presence or absence of flamingo damages from 11 variables describing
landscape features of rice paddies. The global matrix of 1978 records (276 with damage and 1702 without) for the
1993–1996 period was used to determine the suitable parameters: number of hidden layer nodes and number of
iterations. In order to avoid particular inputs either in the training set or in the testing set, ten different randomly
sampled training sets were available. A classic multilayer feed-forward neural network with back-propagation
algorithm was used throughout these experiments. Data from 1993 to 1996 were used to predict data for 1997 (73
fields with damage and 1905 without) and 1998 (88 with damage and 1890 without). Three training set compositions
were displayed: (I) the whole data set (1978 observations), (II) an equal number (276) of damaged and undamaged
fields (552 observations), (III) a set with 1/3 of observations being damaged fields (276) and 2/3 undamaged (552).
ANN faced some difficulty in predicting both presence and absence of damage. The number of each type record in
the training set was particularly sensitive. ANN predicted the more frequent outcome, (i.e. absence of damage). Most
often, better results were obtained when equilibrating the number of presences and absences. In this case, we obtained
performances ranging from 64% up to 87% according to the presence and absence of data in the training set. When
fitting ANN with the whole set of presences to predict damage 1 year later, these results stabilised at :79% for 1997
and between 66 and 72% for 1998 when more than half of the damaged fields were never visited by flamingos during
the period 1993–1997. Our performances are quite similar to the results obtained by previous authors and
predictability from 1 year to the following one also supports that ANN can be an alternative or a supplement to
actual scaring methods in identifying potential damaged fields and propose agricultural management plans or
concentrate scaring actions on these high-risk areas. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rice-crop damage by shorebirds, ducks and/or
passerines has been studied mainly in North and
South America, Africa and Australia, where rice
is cultivated over very large areas. Damage by
these ‘pests’ has been estimated at millions of
dollars annually (Berryman, 1966; Wilson et al.,
1989; Decker et al., 1990) and huge efforts have
been made to find solutions (e.g. Meanley, 1971;
Elliot, 1979; Ward, 1979; Holler et al., 1982;
Avery and Decker, 1994; Avery et al., 1995; Ka-
tondo, 1996).

In Europe, rice cultivation is restricted to parts
of the Mediterranean region and this phe-
nomenon has received less attention. However, in
spring 1978, greater flamingos (Phoenicoterus ru-
ber roseus) began to feed in rice fields of the
Camargue, the delta of the River Rhone in south-
eastern France. Scaring campaigns have been car-
ried out every year since 1981, and crop losses
from flamingos have been reduced. This habit
spread in 1993 to the Ebro delta, north-eastern
Spain, and Spanish farmers now face the same
problem as the French (Jimenez and Soler, 1996;
Johnson and Mesléard, 1997).

Scaring programs, begun in 1981, involve use of
gas exploders, rotating firing devices and Very
pistols (André and Johnson, 1981; Hoffmann and
Johnson, 1991). Even if these techniques are effi-
cient in scaring or keeping away flamingos from
some rice fields, they are costly and time consum-
ing. Monitoring of flamingo movements and be-
haviours must occur over a wide foraging range
(over 60 km from the breeding site at the Etang
du Fangassier; Johnson, 1989). We based our
study on the hypothesis that some plots were
more attractive than others, e.g. that landscape
features may influence the flamingo’s choice of
plots in which to forage (André and Johnson,
1981; Sourribes, 1993; Rogers, 1995; Jimenez and
Soler, 1996; Durieux, 1997).

A model identifying the most vulnerable plots
could be helpful to farmers and wildlife managers
by helping to evaluate the risk of crop damage in
problem areas. Due to the non-linearity of most
of the variables in ecology and the use of qualita-
tive traits in the data set, we computed ANN to

propose predictive models for the damage caused
by flamingos in rice fields and to characterize the
explicative landscape variables.

2. Study area

The Camargue delta of the River Rhône, lies on
the Mediterranean Sea coast. Rice was introduced
into the area in the early 1940s and today paddies
cover some 24 000 ha (16% of the total surface
area of the Camargue and 46% of the agricultural
land, Chauvelon, 1996). Our study was carried
out in the Fumemorte Basin, one of six indepen-
dent drainage basins of the delta. This sector is in
the eastern part of the delta proper and comprises
:70 km2. Rice fields represent some 31% of the
total surface of the basin and 61% of the agricul-
tural land. There are also extensive areas of natu-
ral land (32%) and abandoned farm lands
(23.2%). The agricultural land is subdivided into
small cultural units, 75% being less than 3 ha
(Chauvelon, 1996). The southern part of the basin
is 2 km from the unique breeding site of the
greater flamingo in France (16.5 km for the north-
ern part). The Etang du Fangassier is the only
breeding site of the greater flamingo in France
and one of the most important in the Mediter-
ranean area (Rendon Martos and Johnson, 1996).

Flamingos frequent rice fields between sunset
and sunrise from the end of April to the beginning
of June. This period corresponds to the critical
germination period of rice in the Mediterranean
region (Fasola and Ruiz, 1996; Barbier and
Mouret, 1992). Damage to crops is caused in four
ways (Hoffmann and Johnson, 1991): (i) tram-
pling which prevents germination; (ii) disturbance
of the grain, causing it to float to the surface
where it is blown to the downwind shore; (iii)
seedlings destroyed by trampling and (iv) ingurgi-
tation of rice seeds. Whether flamingos visit the
fields in search of invertebrates or to feed on the
rice grain, or both, is not known. It has been
shown, however, that flamingos prefer some pad-
dies to others and visit the same fields on consec-
utive nights and from 1 year to the next (Rogers,
1995; Jimenez and Soler, 1996).
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3. Methods

3.1. Monitoring damage

We analysed occurrence of rice-crop damage by
flamingos for the period 1993–1998. From 1993
to 1995, data were taken from internal reports of
the Parc Naturel Régional de Camargue, and by
interviewing landowners. Only ascertained
flamingo damaged paddies were considered. For
the period 1996–1998, three methods of monitor-
ing rice crop damage were used (Durieux, 1997):
1. a bi-weekly aerial survey (at 400 ft) of the

Fumemorte basin in the morning. Each field
with turbid water or with tracks was visited
the same day to confirm that flamingos were
responsible for these tracks (presence of feath-
ers, footprints).

2. daily observations at dusk and at night in
strategic places on farmlands considered vul-
nerable. Information gathered by this method
was scarce due to the darkness and size of the
area surveyed.

3. interviews with farmers who plotted on a map
the distribution of fields frequented by flamin-
gos and the number of birds involved. This
inquiry was carried out at the end of June, but
farmers telephoned the ‘French Rice Centre’
or the ‘Tour du Valat Biological Station’ im-
mediately when they noticed groups of flamin-
gos in their fields.

The presence or absence of damage was coded (1)
and (0) respectively.

3.2. En6ironmental 6ariables

We considered 11 environmental variables for
each of 1978 rice fields of the Fumemorte Basin.
These were: surface area; distance from natural
marshes; distance from the breeding site; distance
from the closest wooded hedge or copse; distance
from power lines; distance from habitations; dis-
tance from principal roads; distance from sec-
ondary roads; height of hedges surrounding the
paddy; number of wooded sides; adjacent (1) or
not (0) to damaged field.

Surface area was measured in ha and distances
were considered from the geometric centre of the

field (in m or km). The height of hedges was
assigned to one of five classes according to the
main vegetation occurring in the Camargue
(Durieux, 1997):B50 cm (herbaceous plants or
absence of vegetation); 50 cm–150 cm (mostly
Reed, Phragmites australis); 150 cm–3 m (hedges
composed of Reed, Tamarisk, Tamarix gallica,
Hawthorn, Crataegus monogina, Phillyrea,
Phillyrea angustifolia, Elderberry, Sambucus ni-
gra), 3 m–15 m (Narrow-leaved Ash, Fraxinus
excelsior, Laurel, Laurus nobilis ; Oleaster, Eleag-
nus angustifolia);\15 m (Common Alder, Alnus
glutinosa, Downy Oak, Quercus pubescens, Italian
Cypress, Cupressus semper6irens, Elm, Ulmus
campestris, White Poplar, Populus alba, False
Acacia, Robinia pseudacacia).

3.3. ANN modelling

3.3.1. Fitting and testing
The global matrix of 1978 records (276 with

damage and 1702 without) for the 1993–1996
period was used to train the ANN and to deter-
mine the suitable parameters: number of hidden
layer nodes (HN) and number of iterations. In
order to test the classification quality of the
model, the data matrix was randomly decom-
posed into two sets. The first set was used to train
the neural networks (training sets). The remaining
individuals (testing sets) were used to evaluate the
quality of their assignment in a hold-out proce-
dure (Kohavi, 1995). Due to the larger number of
absences of damage, three set compositions were
sampled: sets A, B and C (Table 1). In order to
avoid particular inputs either in the training set or
in the testing set, ten different training sets C were
randomly sampled (C1–C10).

We used a classic multilayer feed-forward neu-
ral network with back-propagation algorithm
(Rumelhart et al., 1986) throughout these experi-
ments. We trained networks with one hidden layer
of one to 15 neurons. The output variables were:
0=absence of damage, 1=damage.

Training the network consisted of using a train-
ing data-set to adjust the connection weights in
order to obtain the maximum number of individu-
als correctly classified. The connection weights,
initially taken at random in the range [−0.3, 0.3],
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Table 1
Three randomly sampled training and testing sets used for fitting ANN models

Testing setsSet Training sets

No damage TotalDamage Damage No damage Total

1277 1484A 69207 425 494
414 621 69207 1288B 1357
207 414 69 1495C 1564207

were iteratively adjusted by a method of gradient
descent based on the difference between the ob-
served and expected outgoing signals. The number
of iterations (necessary to guarantee the conver-
gence of estimated values toward their expecta-
tions) was first limited to 500, then to 400 in order
to avoid an overfit (see Gallant, 1993). Training was
performed first on sets A, B and C with six, eight,
ten, 12 and 15 hidden neurons, second on three sets
C with one, two, three, four, five, six, seven, eight,
ten, 12 and 15 hidden neurons, third on ten sets C
with six hidden neurons.

3.3.2. Predicting
Data from 1993 to 1996 were used to train a

model and predict data from 1997 (73 with damage
and 1905 without) and 1998 (88 with damage and
1890 without). Three training set compositions
were displayed: (I) the whole data set (1978 obser-
vations), (II) an equal number (276) of damaged
and undamaged fields (552 observations), (III) a set
with 1/3 of the observations being damaged fields
(276) and 2/3 undamaged (552). ANNs were
trained with ten sets of each composition.

Note that all the paddies used by flamingos in
1997 were previously visited by birds while 48
paddies (out of 88) were first visited by the flamin-
gos in 1998. The contribution of each environmen-
tal variable was determined from trainings of ten
type II data sets using the Goh procedure (Garson,
1991; Goh, 1995).

4. Results

4.1. Fitting and testing models

The larger number of ‘absences’ in the set A

induced the learning of absences far better than
presences (Fig. 1). Training with the set B was good
for both absence and presence, but presence was
poorly predicted (:50% of correct classification).
The best results were obtained when equilibrating
the ‘presences’ and ‘absences’ (set C). After 180
iterations, performances fluctuated, according to
the number of neurons of the hidden layer (HN=
6–15), between 80 and 99% for training, and
between 61 and 84% for testing. For the next steps
of analysis, we considered 400 iterations when the
correct classification percentage was between 84
and 99% for training, and between 61 and 77% for
testing, in order to avoid anoverfit. When training
the ANN with three sets C, there was little variation
in the testing scores according to the number of
hidden layer nodes (Fig. 2). However, predictions
seemed to be more balanced with an intermediate
number of hidden layer nodes (HN=6): 69 to 75%
for absences and 68 to 77% for presences. Training
ANN with an equal set of presences and absences
gave the best correct classification percentages after
400 iterations when using a model with 6 hidden
layer nodes. This configuration was used for the
following analysis. The correct prediction, repeated
5 times, for ten randomly sampled testing sets,
associated with equilibrate training sets, varied
from 64% (set 4) to 87% (set 2) for presences (Fig.
3), and from 65% (set 1) to 79% (set 3) for absences.
However the scores were balanced and quite homo-
geneous for all the sets.

4.2. Prediction

A model (I) with an intermediate number of
hidden layer nodes (HN=6) and trained with the
whole 1993–1996 data set predicted more ab-
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Fig. 1. Number of iterations and performance (percentage of correct classification) obtained for three set compositions (A, B, C; see
text) by ANN model in training and testing. Five configurations of hidden layer nodes are represented (HN=6, 8, 10, 12, 15).



C. Tourenq et al. / Ecological Modelling 120 (1999) 349–358354

Fig. 2. Performances of three networks with an equilibrate
number of presences and absences (207) according to the
number of hidden layer nodes. For each network, training was
proceeded three times and tested three times with the rest of
the observations. A= absences, P= presences.

Fig. 3. Predictive power of ANN models (HN=6) determined
from five trainings of ten sets with an equilibrate number of
presences (pres) and absences (abs).

were quite stable for ten trainings :79% for both
presences and absences (Table 2).

Predictions differed slightly for 1998 (Table 3).
A model using a type III training set and same
training scores as 1997, predicted more absences
than presences (:76% vs 60%). There were no
such differences between accuracy of classification
using a type II training set. Despite higher train-
ing scores, the predictive scores were lower than
in 1997, mainly for absences. These results can be
easily related to the somewhat different location
of damage in 1998 compared with the previous
years.

sences (92.4%) than presences of flamingos in rice
fields (53.4%) in 1997. A model (II) with similar
number of HNs (6) but with an equal number of
presences and absences predicted more the pres-
ences (93.2%) than the absences (65.7%). A simi-
lar model (III) with 1/3 of observations being
presences and 2/3 being absences gave a balanced
prediction for 1997. Predictive scores of model III

Table 2
Predictions for 1997 of ten type III (1/3 observations being presences and 2/3 being absences) ANN models with an intermediate
number of hidden layer nodes (HN=6)

TestingTraining Training Testing

Presences (%) Absences (%)(1993–1996) (1997) Presences (%) Absences (%)

79.683.5III.1 94.780.81905 A+73 P

79.3 89.3 80.8 77.6III.2 id.
III.3 77.678.191.885.9id.

80.572.693.179id.III.4
94.2id. 79.4 79.783III.5

id. 75.3 95.5III.6 71.2 80.4
III.7 id. 80 94.5 80.8 79.5

81.2 77.978.1id. 92.4III.8
id. 80 91.3III.9 78.1 77.7

9481.5idIII.10 81.384.9
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Table 3
Predictions for 1998 of ten type II (equal number of absences and presences) and ten type III (1/3 observations being presences and
2/3 being absences) ANN models with an intermediate number of hidden layer nodes (HN=6)a

Model IIIModel II

Training Testing Training Testing

Absence (%)Set Presence (%)Presence (%) Absence (%) Presence (%) Absence (%) Presence (%) Absence (%)

93.84 69.32 66.19 85.15 95.29 60.231 76.8892.03
88.04 76.14 65.34 82.6193.84 92.752 57.96 75.19

91.673 93.84 73.86 65.19 79.71 92.39 51.14 77.73
93.12 68.18 68.36 86.964 93.389.13 63.64 74.79
88.04 71.59 66.14 81.8892.03 95.115 56.82 78.73

92.756 89.49 70.46 64.55 84.78 93.3 64.77 78.25
90.22 73.86 65.93 80.8 93.127 55.6893.12 76.51
90.58 68.18 65.87 84.7892.39 93.488 60.23 77.78

92.399 92.03 73.86 67.19 86.23 93.3 56.82 76.24
91.3 70.46 64.07 85.51 92.57 63.6410 76.3593.48

91.05 71.591 65.883Mean 83.84192.283 93.461 59.093 76.845
S.D. 2.1691.301 2.731 1.240 2.435 0.983 4.252 1.285

a S.D.= standard deviation.

4.3. Contributions of en6ironmental 6ariables

From one model to another, all variables dis-
played high contributions (Table 4). However the
contributions of the surface of rice fields (SUP),
and also of the distance from the colony (DCO),
was often weak, while the distance from natural
marshes (DNM) and the distance from the closest
wooded hedge (DWO) exhibited high contribu-
tions in most of the models. Note that contribu-
tions of input variables varied considerably
among models. For example, model four at-
tributed a huge contribution to the distance from
natural marshes (DNM), the number of closed
sides (NWS) exhibited also a heavy contribution,
while these variables were weakly implicated in
model seven.

5. Discussion

Artificial neural networks faced some
difficulties in predicting both presence and ab-
sence of damage. The number of each type record
in the training set was particularly sensitive. As
previously observed by Spitz et al. (1996), Mas-

trorillo et al. (1997), Manel et al. (1999), ANNs
delivered better prediction for the largest occur-
rence. Better results were obtained when equili-
brating the number of presences and absences.
This is a problem, because in ecology absences are
often far more frequent than presences, and obvi-
ously, information is lost by decreasing the num-
ber of absences in training sets. The weak
improvement of the performance of ANN with
the increasing number of hidden layer neurons
could be related to close relative input variables,
but we can hardly conceive that it is the case with
environmental variables such as distance to the
natural marshes and number of wooded sides to
the field.

When equilibrating correct predictions of pres-
ence and absence of damage, we obtained perfor-
mances ranging from 64% up to 87% according to
the sampled data in the training set. When fitting
ANN with the whole set of presences to predict
damage 1 year later, these results stabilized :
79% for 1997 and between 66 and 72% for 1998
when more than half of the damaged fields were
never visited by flamingos during the period
1993–1997. These performances are quite similar
to the results obtained by Spitz et al. (1996) in
predicting the impact of Wild Boar (Sus scrofa)
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on cultivated fields (approximately 80% for pres-
ence, but only 42% for absence).

Damage of rice fields by flamingos may be a
trivial problem on an international or on a na-
tional scale, but, at a regional or local scale the
situation is more critical. Flamingo damage for
the Camargue has been estimated at approxi-
mately $153 000 annually (Johnson and Mesléard,
1997). Even if crop losses attributable to flamin-
gos has no perceptible impact on farming in terms
of national crop production, like other bird prob-
lems in Europe (O’Connor and Shrubb, 1986;
Edgell and Williams, 1991), the same fields can be
visited on consecutive nights and over consecutive
years (Rogers, 1995) and crop losses can be im-
portant for a single farmer.

Until now, several non-lethal or lethal tech-
niques were advanced to prevent damages to rice
paddies by birds (Meanley, 1971; Elliot, 1979;
Ward, 1979; Wilson et al., 1989; Decker et al.,
1990; Hoffmann and Johnson, 1991; Avery et al.,
1995). However, the effectiveness of these opera-
tions is shown to be conditioned by the number of
birds and by the mobility and behaviour of the
species concerned (O’Connor and Shrubb, 1986;

Brugger et al., 1992). Rather than searching for
short-term methods of control which are not nec-
essarily efficient, nor ethical (Morrisson, 1975;
Van Vessem et al., 1985; Caughley and Sinclair,
1994), long-term solutions to this particular prob-
lem should be sought. Predictability from 1 year
to the next supports the idea that ANN can be an
alternative or a supplement to actual scaring
methods in identifying vulnerable fields. This
would enable agricultural management plans to
be established or scaring actions to be concen-
trated on these high-risk areas.

The next step of our study is to extend predic-
tions to the whole of the Camargue and to accu-
rately identify vulnerable fields in order to
concentrate scaring methods or propose manage-
ment actions on these high-risk areas. This study
interestingly revealed the ability of ANN to pre-
dict damage by greater flamingos from a small set
of environmental variables which it is easy to
collect. However, before extending the model,
some new analyses are needed to improve the
predictions, and also to find a method of identify-
ing the most relevant environmental variables for
modelling the prediction (discriminant analysis,

Table 4
Relative importance of input variables for ten type II setsa,b

CONNWSHHSDSRDPRSUP DHASet DTLDWODCODNM

9.22 9.85 9.86 10.18 8.23II.1 6.30 9.20 9.43 8.35 11.84 7.55
9.419.598.995.414.118.549.2811.310.8013.309.18II.2

13.40 6.48 13.7 8.7 10.40II.3 8.3210.4 9.14 6.80 3.84 8.85
II.4 4.31 19.20 5.85 9.77 5.8 9.91 8.14 9.24 7.43 12.00 8.32

12.50 5.41 12.5 7.74 12.80II.5 8.905.17 7.39 9.52 9.63 8.44
II.6 6.854.477.6812.306.7114.28.5711.88.937.1311.30

13.708.939.9110.908.96 7.649.9211.85.389.143.69II.7
12.00 8.70 9.48 9.36II.8 9.215.03 9.84 11.00 7.35 8.26 9.75

9.81 11.20 5.79 10.20 5.27II.9 7.46 10.20 10.20 8.18 13.60 8.17
II.10 6.237.87 10.80 9.83 10.20 11.50 11.80 8.53 9.635.757.87

7.711.857.6Mean 8.469.278.119.268.259.968.4411.09
2.79 3.23 2.12 1.36 1.85 2.42 2.06 1.9 0.85 3.63S.D. 0.96

a SUP: surface area, DNM: distance from natural marshes, DCO: distance from the breeding site, DWO: distance from the closest
wooded hedge or copse, DTL: distance from power lines, DHA: distance from habitations, DPR: distance from principal roads,
DSR: distance from secondary roads, HHS: height of hedges surrounding the paddy, NWS: number of wooded sides, CON: adjacent
(1) or not (0) to damaged field.

b S.D.= standard deviation.
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logistic regression . . . ), as in ANNs usually all
the variables contribute to the models. However,
the use of qualitative traits, which is possibly
responsible for the important variation of contri-
butions between different trainings, can be a
problem for other classification methods. While
keeping a small set of input variables, the tempo-
ral structure of damage should be usefully investi-
gated if flamingos exhibit more site-fidelity than
proximate response to environmental factors.
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Johnson, A.R., Mesléard, F. 1997.Les flamants et la rizicul-
ture. In: Clergeau, P., Oiseaux à Risques en Ville et à la
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