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Abstract

A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity

index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664

sites at 23 different water types such as springs, streams, rivers, canals, ditches, lakes, and pools in The Netherlands. By

training the CPN, the sampling sites were classified into five groups and the classification was mainly related to

pollution status and habitat type of the sampling sites. By visualizing environmental variables and diversity indices on

the map of the trained model, the relationships between variables were evaluated. The trained CPN serves as a ‘look-up

table’ for finding the corresponding values between environmental variables and community indices. The output of the

model fitted SH and SR well showing a high accuracy of the prediction (r > 0:90 and 0:67 for learning and testing

process, respectively) for both SH and SR. Finally, the results of this study, which uses the capability of the CPN for

patterning and predicting ecological data, suggest that the CPN can be effectively used as a tool for assessing ecological

status and predicting water quality of target ecosystems.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Understanding community patterns is important to

manage target ecosystems. Especially in aquatic ecosys-

tems, communities of benthic macroinvertebrates are

important to monitor changes of the target system.

Benthic macroinvertebrates constitute a heterogeneous

assemblage of animal phyla and consequently some

members respond to stresses placed upon them, and

provide both a facility for examining temporal changes

and integrating the effects of prolonged exposure to

intermittent discharges or variable concentrations of

pollutants [1]. Therefore, it is promising to characterize

the changes occurring in communities to assess target

ecosystems exposed to environmental disturbances [1,2].

It is obvious that biological communities are affected

by man-made alterations of nature [3,4]. To evaluate

changes of communities in space and/or time, diversity

indices are commonly used [1,5]. Species richness (SR) is

an integrative descriptor of the community, as it is

influenced by a large number of natural environmental

factors as well as anthropogenic disturbances [2]. The

disturbances of environmental factors lead to spatial

discontinuities of predictable gradients and losses of

taxa [6]. Therefore, SR is used as a biological indicator

of disturbance. As with SR, diversity indices decrease

under increasing disturbance and stress on the ecosys-

tem. The Shannon diversity index (SH) is commonly
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used to describe the diversity of a particular community

and as an ecological indicator for the assessments of

ecosystems [7].

Development of methods for patterning spatial and/

or temporal changes in communities has currently

become an important issue in ecosystem management.

Traditionally, conventional multivariate analyses have

been applied to solve these problems [5]. This task,

however, is not easy to achieve as nonlinear, complex

interactions occur in the dataset consisting of many

species and sampling areas. To respect the natural

nonlinearity of ecological data, artificial intelligence

methods could be preferred [8]. An artificial neural

network is a versatile tool for dealing with problems to

extract information out of complex, nonlinear data, and

it is more and more used in modelling aquatic

ecosystems [8–10]. Most of these models have used two

popular artificial neural networks: a multilayer percep-

tron with a backpropagation algorithm (BP) [11] and a

Kohonen’s self-organizing map (SOM) [12,13]. The

networks are mainly used to predict target values or to

classify input vectors in a model. It is not easy to

conduct both classification and prediction in such

networks at the same time.

However, patterning and predicting could effectively

be carried out in a network. One example is a counter-

propagation network (CPN) [14], which consists

of unsupervised and supervised learning algorithms.

It classifies input vectors and predicts output values.

This study aims to apply a CPN for patterning and

for predicting the ecological data consisting of benthic

macroinvertebrate communities and environmental

variables.

2. Materials and methods

2.1. Modelling procedure

The CPN [14] is a hybrid neural network combining

the SOM [12] and the Grossberg outstar [15]. The

network is designed to approximate continuous func-

tional associations between variables, and serves as a

statistically optimal self-programming look-up table

[14]. In this study, we used a forward-only CPN which

is a specific type of CPN without counterflow (Fig. 1).

In the modelling process, initially the data vectors x

(explanatory variables) and y (dependent variables) are

given to the SOM and the Grossberg layers, respectively.

Then, the weights are updated for a given set of data

vectors x and y: For the CPN this occurs in two phases.

First, the SOM layer is trained. When the input vector x
is sent through the network, each neuron (computation

unit) k of the network computes the distance between

the weight vector v and the input vector x: Among all N

output neurons in two dimensions, the best matching

neuron (BMN) which has minimum distance becomes

the winner. The BMN and its neighboring neurons are

allowed to learn by changing their weights so as to

further reduce the distance between the weight and the

input vectors as follows [13]:

vjk ¼ vjk þ hckðxj � vjkÞ; ð1Þ

where vjk is the weight between neuron j of the input

layer and neuron k of the SOM layer, and hck is a

neighborhood function and a smoothing kernel for

location vectors of BMN c and k defined over the lattice

of the output layer. This can be written in terms of the

Gaussian function:

hckðtÞ ¼ a exp �
jjrc � rkjj

2

2s2

� �
; ð2Þ

where rc and rk are location vectors of neuron c and k;
respectively, in the output layer, a and s are, respec-

tively, a learning rate factor and the width of the kernel,

and monotonically decreasing functions of time. This

results in training the layer to classify the input vectors

by the weight vector v they are closest to.

Once the SOM layer is trained, the Grossberg layer is

trained. This is done in a supervised mode according to

the following procedure. An input vector x is applied to

the CPN, the output of the SOM layer is established,

and the Grossberg layer outputs are calculated. In this

process, the Grossberg layer receives z vector signals

from the SOM layer. If the difference between the

desired and the estimated output values is greater than

an acceptable error, the weights are updated as follows:

wki ¼ wki þ bðyi � wkiÞzk; ð3Þ

where wki is the weight between neuron k of the SOM

layer and neuron i of the Grossberg layer, b is the

learning rate, and zk is assigned to 1 for the BMN while

set to 0 for all other neurons of the SOM layer. The

weights correspond to the averages of the desired

outputs y associated to the inputs x according to the

equiprobability of the winning neurons of the SOM

layer. The trained CPN actually functions as a

statistically self-programming look-up table.

After training the CPN in this study, a unified-matrix

algorithm (U-matrix) [16] was applied to detect the
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Fig. 1. Schematic diagram of a forward-only CPN.
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cluster boundaries on the map of the SOM layer. The

algorithm is commonly used to find clusters in the SOM

units.

2.2. Relationships between biological and environmental

variables

The values calculated for each input variable during

the learning process were visualized on the trained SOM

map with a gray scale to represent the relationships

between the input variables and the clusters of the input

vectors. Furthermore, to understand relationships be-

tween input (environmental) variables and output

(biological) variables, mean values of output variables

were calculated in corresponding units of the trained

SOM, visualized with a gray scale [17], and compared

with maps of environmental variables. The environ-

mental variables were classified into several groups

based on their distribution patterns on the trained SOM

map with weight vectors of the trained SOM to estimate

relationships between variables.

2.3. Ecological data

To implement the capability of the CPN, benthic

macroinvertebrate communities and the corresponding

environmental variables were used. The datasets were

extracted from the database EKOO in The Netherlands

[18]. The data were collected at 664 sites (Fig. 2) of 23

different water types (Table 1) in the province Overijssel,

The Netherlands. A total of 854 species were recorded

and Chironomidae, Coleoptera, and Oligochaeta were

the most abundant taxa in the dataset. From the

community matrix, two community indices; SR (number

Table 1

Water types of sampling sites and number of samples collected

in each water type

Acronym Water type No. of samples

BB Lower watercourses 24

BK Springs sources 21

BO Upper watercourses 63

BP Remaining stream pools 17

BR Springs 22

BV Spring ponds 1

DW Temporary water 25

KA Canals 35

KB Regulated small rivers 34

KO Deep ponds 27

LS Peat ditches 29

ML Middle watercourses 29

MM Small lakes 24

PE Peat pits 26

PO Shallow pools 24

RM Large lakes 10

RR Rivers 33

SB Regulated streams 24

SG Spring gutter 1

SL Ditches 97

VA Peat canals 42

VE Moorland pools 32

ZW Sand and clay pits 24

30km0

N

5 7

53

52

51 Belgium

The Netherlands

Germany

60km0

Fig. 2. Sampling sites in the province of Overijssel, The Netherlands. Each sampling site is marked with a spot.
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of species collected at each sample) and SH were

extracted to evaluate the benthic macroinvertebrate

community structure at each sampling site. The mean

SR was 54.46 (70.94 SE) ranging from 2 to 132, and

mean diversity index was 5.29 (70.03 SE) ranging from

0.49 to 6.77.

Thirty-four environmental variables (Table 2) were

also measured at each sampling site, and showed a wide

range in environmental conditions. Verdonschot and

Nijboer [18] have reported the general ecological

characteristics in the EKOO database. The environ-

mental variables were used to predict SR and SH of

benthic macroinvertebrate communities using the CPN.

Out of 664 sites 500 were used to train the network;

while the remaining 164 were applied to test the

performance of the trained network. The input data;

both environmental variables and biological attributes;

were proportionally scaled between 0 and 1 in the range

of the minimum and maximum values. Before scaling

data; the environmental variables were transformed by

natural logarithm to reduce skewed distributions.

3. Results

3.1. Patterning input variables

The CPN patterned the dataset in the SOM layer, and

a U-matrix method clustered the units of the trained

SOM map. The results showed five clusters (I–V) of

sampling sites according to environmental gradients,

and two subclusters Va and Vb were observed in cluster

V (Fig. 3). The acronyms of the water types are given in

Table 1. Each cluster was mainly associated with the

characteristics of the water types. For instance, cluster I

mainly consisted of sites of moorland pools (VE), cluster

II of ditches (SL), cluster III of stagnant water bodies

(VA, PE, PO, and KA), cluster IV of large rivers and

Table 2

Thirty-four quantitative environmental variables used in the model

Variables Acronym Unit Mean (SE)

Percentage cover emergent vegetation BOVE% % 6.77 (0.54)

Percentage cover floating vegetation DRIJ% % 11.67 (0.89)

Percentage cover floating algae FLAL% % 3.82 (0.56)

Percentage sampled habitat: emergent vegetation MMBO% % 16.16 (0.86)

Percentage sampled habitat: detritus MMDE% % 9.01 (0.69)

Percentage sampled habitat: floating vegetation MMDR% % 12.96 (0.79)

Percentage sampled habitat: gravel MMGR% % 1.36 (0.20)

Percentage sampled habitat: clay MMKL% % 0.51 (0.14)

Percentage sampled habitat: bank MMOE% % 18.24 (0.91)

Percentage sampled habitat: submerged vegetation MMON% % 12.05 (0.76)

Percentage sampled habitat: silt MMSL% % 15.67 (0.73)

Percentage sampled habitat: stones MMST% % 0.72 (0.13)

Percentage sampled habitat: peat MMVE% % 2.20 (0.26)

Percentage sampled habitat: sand MMZA% % 10.51 (0.65)

Dissolved oxygen percent saturation O2% % 90.70 (1.66)

Percentage cover bank vegetation OEVE% % 6.10 (0.57)

Percentage cover submerged vegetation ONDE% % 11.23 (0.92)

Percentage cover all vegetation TOTB% % 33.14 (1.38)

Width of stream WIDTH m 64.24 (18.16)

Ratio width/depth WD/DP 28.51 (4.54)

Calcium Ca++ mg/l 51.21 (1.01)

Chloride Cl� mg/l 52.79 (1.98)

Depth DEPTH m 1.13 (0.06)

Silt thickness DSAPR m 0.11 (0.01)

Electric conductivity ECOND ms/cm 427.95 (9.18)

Ammonium NH4
+ mg N/l 1.46 (0.14)

Nitrate NO3
� mg N/l 3.87 (0.32)

Oxygen concentration O2 mg/l 9.71 (0.16)

Ortho-phosphate O–P mg P/l 0.29 (0.03)

Acidity pH 7.13 (0.04)

Flow velocity VELOC m/s 0.07 (0.01)

Water temperature TEMP 1C 13.26 (0.24)

Total-phosphate T–P mg P/l 0.51 (0.05)

Slope VERVA m/km 5.91 (0.81)
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lakes (RR, RM, KA, and ZW) and ditches (SL). Finally,

clusters Va and Vb were characterized, respectively, by

springs and upper watercourses (BK, BO and BR) and

intermittent or regulated streams (BP, DW and SB).

These distribution patterns show the characteristics of

natural key conditions of water systems. The sampling

sites located on the left areas of the SOM map were

mainly from unregulated water systems, whereas sites on

the right were from regulated areas (Fig. 3).

Fig. 4 displays the contribution of each input variable

for the classification of sampling sites on the SOM map.

Dark areas represent high contribution of each input

variable, while light ones display low values. The values

were calculated during the learning process of the

network. Acronyms of environmental variables are

shown in Table 2. Each variable displays a high-gradient

distribution on the SOM map. In the environmental

variables, nine groups were observed according to their

distribution similarities (A-I). The groups of variables

show different aspects of environment. For example,

group B is related to electric conductivity and group F is

characterized by inorganic nutrients (NH4
+, T–P, and

O–P). The groups also show different local habitat

characteristics. Groups A and D are concerned with

percentages of vegetation cover, whereas group H

typically represents the characteristics of upper water

course habitats showing high percentages of detritus,

stones, sands, and gravels with high current velocities

and strong slopes. The morphological characters of

streams (width and depth) were grouped together in

group E.

The next step is to compare the relationship between

clusters of sampling sites and groups of environmental

variables. Clusters I and II are related to low values of

group B and high values of group D, and cluster III is

represented by high values of groups D and G, and low

values of group H (Fig. 3). Similarly, cluster IV is

displayed by high values of groups B and E and

Fig. 3. Classification of sampling sites with environmental variables in the SOM layer of the CPN. The U-matrix algorithm was

applied to cluster the SOM units. The Latin numbers (I–V) represent different clusters. The acronyms in the hexagonal units represent

different water types, and are shown in Table 1. The font size of the acronym is proportional to the number of sampling sites in the

water types in the range of 1–18 samples.
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variables MMBO%, MMKL%, and MMOE% of

group I, and subclusters Va and Vb are strongly related

to high values of groups H and F, respectively. Nitrogen

and phosphorus compounds, which were mainly con-

sidered as pollutants at high concentrations, represent

the groups F and H. Furthermore, the sampling sites in

the left areas of the SOM map (clusters I, II, Va) display

mainly unregulated water systems, while the sites in the

right areas (clusters III, IV, Vb) reveal regulated aquatic

systems like canals. Overall, Fig. 3 shows that sites of

clusters I and II in the lower areas of the SOM map are

not disturbed and contain well-developed vegetation,

whereas the sites of cluster Vb in the upper area are

disturbed by regulation and nutrients (e.g. nitrate,

ammonium, ortho-phosphate, and total phosphate)

which are presumably due to increased amounts of

dissolved ions entering the water through agricultural

activities.

3.2. Relationship between environmental variables and

community indices

To evaluate the relationships between environmental

variables and diversity indices (SR and SH), the mean

values of the SR and SH were visualized on the trained

SOM map in gray scale (Fig. 5). The results show that

SH and SR are higher in the lower areas of the SOM

map than in the upper areas, and higher in the right

NH4+O-P T-P MMSL%

pH ECOND Cl- Ca++ TEMP WD/DP

WIDTH DEPTH

DRIJ%BOVE% TOTB%

(A)

ONDE% MMON%

O2 O2%

DSAPR

FLAL%

OEVE% MMOE%MMBO% MMDR%

MMVE%

MMKL%

NO3 MMZA%MMDE% MMGR%VELOC VERVA MMST%

(B) (C)

(D) (E)

(F) (G)

(H)

(I)

Fig. 4. Component planes displaying the contribution of each environmental variable to classification of sampling sites. Based on the

similarity of the distribution pattern, nine groups (A–I) were identified. The names of the environmental variables are given in Table 2.

Dark represents high values of each variable, whereas light is for low values. The values were calculated during the learning process of

the network.
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areas than in the left areas. The low values in the upper

areas (cluster V) are mainly influenced by high

concentration of nitrogen and phosphorus compounds

in groups F and H (Figs. 3–5). They are also affected by

substrate conditions of their habitats with high percen-

tages of stone, gravel, sand, and detritus in substrates.

Sampling sites in these areas are characterized by water

types of springs and upper courses (cluster Va) and

intermittent and regulated water systems (cluster Vb).

SR and SH were also related to dissolved oxygen (group

G). Thus, both community indices are higher at the

samples assigned in the lower right areas, which were

slightly polluted by nutrients and morphologically,

physically regulated by water managers, while they are

lower at samples in the upper areas, which represent

upper watercourses and highly influenced by nutrients.

3.3. Prediction of community indices

The trained CPN serves as a ‘look-up table’ for

finding the corresponding values between the input and

output variables. The Grossberg layer of the trained

network showed a high predictability in the learning

process (Figs. 6a and b). Correlation coefficients be-

tween observed and estimated values were 0.90

(Po0:01) for both SH and SR. In both cases, over-

estimations were observed at low values, while under-

estimations were observed at high values. This is caused

by the structural characteristics of data. There are few

cases with low values in both SH and SR. The frequency

histogram of error values showed that most error values

lie around zero (Figs. 6c and d). The residuals between

observed and estimated values averaged 0.03 (70.02 SE)

and 2.51 (70.52 SE) for SH and SR, respectively.

The data not used in the learning process were applied

to test the feasibility of the trained network. The results

showed a high predictability of the network. The

correlation coefficients between observed and predicted

values were 0.70 and 0.67 for SH and SR, respectively

(Po0:001) (Figs. 7a and b). A majority of frequencies of

the error terms also appeared around zero (Figs. 7c and

d). The residuals between observed and predicted values

were located around zero showing averages of 0.11

(70.05 SE) and 4.71 (71.62 SE) for SH and SR,

respectively. Thus, the results show that the trained

CPN corresponded well to the reality of SH and SR.

4. Discussion

The CPN was implemented to pattern sampling sites

and to predict SR and SH with the environmental

variables available in this study. In the first step, the

network classified sampling sites into five clusters based

on environmental variables in the SOM layer, and

afterwards the diversity indices (SR and SH) were

predicted in the output layer of the network. Thus, the

CPN shows to be a general approach to explain the

variation of ecological data in two steps: ordination

methods to summarize the variability of the data as a

first step, and exploration for possible relationships

between biological and environmental variables as a

second step [19].

The SOM layer showed the ability to produce a

classification of input vectors as well as visualization of

relationships among input variables in their contribution

to the classification. The analysis using visualization of

component planes is comparable to principal compo-

nent analysis, but more directly describes the discrimi-

natory power of the input variables in the mapping

procedure [13]. A clear distribution gradient of a

variable represents a high contribution to the classifica-

tion of input vectors. In this study, the sampling sites

were classified into five clusters and input variables were

divided into nine groups. Each cluster was explained

very well by environmental groups (Figs. 3 and 4).

Fig. 5. Distribution of SH and SR on the SOM map trained with environmental variables. Dark represents high values of each

variable, whereas light displays low values. The mean values of each variable were calculated in each unit of the SOM map.
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Furthermore, by overlapping the distribution of both

input variables and mean values of diversity indices on

the SOM map, the relationships between explanatory

(input) variables and dependent (output) variables could

be analyzed. When there are strong relationships

between input and output variables, the component

planes show clear gradients and similar patterns of their

distribution on the trained SOM map. However, it is

necessary to quantify the distribution gradient of each

variable as well as the relationships between biological

and environmental variables.

The structure of the CPN is similar to a combination

of two networks; SOM and multilayer perceptron with

BP. Especially when prediction output values are

considered, the CPN is related to the BP. It is considered

that the BP is relatively better than the CPN, although

there is still debate on this point [20]. In contrast, the

CPN is more effective in noise sensitivity, and perform

well without being influenced by the increase in data

size. Recently, these characteristics were successfully

applied for patterning hierarchical relationships among

taxonomic groups of benthic macroinvertebrates [21].

Since information extraction and noise sensitivity are

equally important in adaptive learning processes with

ecological data, it is difficult to decide which algorithm

should be better suited for patterning communities at

the present time. Further, comparative research may be

required with various ecosystem data in the future.

According to the distribution gradients of the

environmental variables on the SOM map, influence of

environmental variables on the classification of the

sampling sites as well as on diversity indices could be

assessed effectively. The low values of SR and diversity

index were mainly affected by high values of nutrients

concentration such as nitrogen and phosphorus com-

pounds, and substrate conditions of their habitats. Thus,

both diversity indices are higher at the slightly polluted

and regulated samples, while lower at samples highly

influenced by nutrients. Both nitrogen and phosphorus

compounds are essential for living organisms and the

limiting nutrients for algal growth and, therefore,

control the primary productivity of a water body [22].

The eutrophication due to the artificial increase in

concentration of these nutrients affects on energy flow of
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correlations between observed values and estimated values of the model trained with 34 environmental variables (a), (b); and

distribution of residuals in the learning phase (c), (d).
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aquatic ecosystems and cause decline of biodiversity

[23,24]. Furthermore, sampling sites in the low-diversity

areas are also characterized by water types of springs

and upper courses. This is supported by the intermediate

disturbance hypothesis [25] assuming that high species

diversity is a result of intermediate frequency of

disturbance, while either too low or too high frequency

of disturbance will result in a low biodiversity [26].

The community structure is changed by perturbations

in the environment and the degree of the structure

change is used to assess the intensity of the environ-

mental stress [1]. The SR is a function of the stability of

the environment [5]. A stable environment contains

more species and more niches, because a more stable

environment involves a higher degree of organization

and complexity of the food web [27]. The niche of a

species is the set of environmental conditions that the

species does not share with any other sympatric species,

so SR is concerned with the number of niches [28].

Diversity index further accommodates the evenness

concepts in addition to the taxon richness, and

represents heterogeneity of species composition, char-

acterizing the ecological status of communities at a given

site and a given time [1]. Based on these facts, SR and

diversity indices are frequently used as biological

indicators of target ecosystems in combination. It is

worth predicting these indices with their explanatory

variables, and they can be used as a tool for the

assessment of disturbance in a given ecosystem.

5. Conclusion

By combining two different neural network models,

aquatic ecological data were patterned and predicted

with concerning descriptor variables. At first, the

sampling sites were classified into several clusters in

the SOM layer, and the classification was mainly related

with pollution status and habitat types of sampling sites.

According to the distribution gradients of the environ-

mental variables on the SOM map, their influence on the

classification of the sampling sites could be assessed

effectively. Furthermore, by visualizing variables on the

trained SOM map, we could evaluate the relationships
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Fig. 7. Results of the model tested with the datasets not used in the learning process. Scatter plots represent correlations between

observed and predicted values for both diversity index (SH) and SR (a), (b); and distribution of residuals (c), (d).
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between environmental variables and community indices

showing that SR and diversity indices were strongly

influenced by concentration of nutrients, dissolved

oxygen, and percentages of vegetation cover as well as

by different water types. This method, classifying

sampling sites and visualizing environmental and

biological variables on the trained same SOM map, is

useful to understand complex ecological data. Further-

more, the trained CPN serves as a ‘look-up table’ for

finding the corresponding values between the explana-

tory and dependant variables displaying a high accuracy

of the prediction. Finally, these results suggest that the

capability of the CPN for patterning and predicting

ecological data can be effectively used as a tool for

assessing ecological status and for predicting water

quality of target ecosystems in managing aquatic

ecosystems according to the EU Water Framework

Directive.
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