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Abstract

The artificial neural network (ANN) was used in this work for modelling the abundance and diversity of
hydrophilous Collembola on the microhabitat scale. The procedure was applied to a Collembolan assemblage of the
northern Pyrenees. Six variables were retained to describe its structure: abundance of the three dominant species,
species richness, overall abundance of Collembola, and Shannon index. Seven environmental variables were selected
as explanatory variables: distance to water, soil temperature, water content, and proportion of mineral soil, moss,
litter and rotten wood in the substrate. Correlations between observed values and values estimated by ANN models
of the six dependent variables were all highly significant. The ANN models were developed from 83 samples chosen
at random and were validated on the 21 remaining samples. The role of each variable was evaluated by inputting
fictitious configurations of independent variables and by checking the response of the model. The resulting habitat
profiles depict the complex influence of each environmental variable on the biological parameters of the assemblage,
and the non-linear relationships between dependent and independent variables. The main results and the ANN
potential to predict biodiversity and structural characteristics of species assemblages are discussed. © 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Biodiversity conservation is a growing concern
in western environmental policies. While species
and habitats are disappearing at an alarming rate,
we are however unable to evaluate, even roughly,
the extent of this biodiversity loss, not to mention
predicting it. In fact, estimating biodiversity is a

tedious task when thousands of species may in-
habit the same patch of forest, so taxonomist
training would be advantageously coupled here
with the development of forecasting techniques
based on habitat characteristics, or on a subset of
the overall biodiversity. Surprisingly, attempts to
predict biodiversity on such grounds are scarce in
the literature, except with a few animal groups
such as birds (McArthur et al., 1966). Conversely,
a wealth of works deal with abundance and
biomass prediction (Verner et al., 1986), obviously
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in relation to their more direct socio-economic
importance. There are a-priori no specific mathe-
matical tools for predicting biodiversity, so the
techniques used for predicting abundance also
should work for biodiversity or any other measur-
able biological variable.

A lot of theoretical models have been proposed
in this respect (McArthur et al., 1966; Fretwell,
1972; Tilman, 1982; Schoener, 1983) using a wide
range of multivariate techniques, including several
methods of ordination, canonical analysis, uni-
variate and multivariate linear, curvilinear, and
logistic regressions. A thorough and critical re-
view by James and McCulloch (1990) shows that
these conventional models, usually based on mul-
tiple regression, assume smooth, continuous, and
either linear or simple polynomial relationships
between variables. They are capable of solving
many problems, but also have serious shortcom-
ings since the main processes that determine the
level of biodiversity or species abundance are
often non-linear, whereas the methods are based
on linear principles. Such models are for example
not able to adequately reproduce the behaviour of
real systems when very low or high values of the
variables are considered (Lek et al., 1996b). Non-
linear transformation of variables (logarithmic,
power or exponential functions) may improve the
results only to a limited extent. The artificial
neural network (ANN) approach as proposed
here emerges as a different and original methodol-
ogy which is not constrained by assumptions
about the type of relation between the studied
variables (Rumelhart et al., 1986). The number of
papers using ANN methodology published in eco-
logical sciences has grown rapidly in recent years,
e.g. modelling of greenhouse climate (Seginer et
al., 1994), identification of the major goals of
underwater acoustics (Casselman et al., 1994),
prediction of density and biomass of brown trout
redds (Lek et al., 1996a), prediction of density
and biomass of trout (Baran et al., 1996; Lek et
al., 1996b), prediction of the penetration of wild
boar into cultivated fields (Spitz et al., 1996),
prediction of phytoplankton production (Scardi,
1996), prediction of production/biomass (P/B) ra-
tio of animal populations (Brey et al., 1996), and
prediction of fish species richness on a global scale
(Guégan et al., 1998), etc.

In the field of soil ecology, multiple linear re-
gression (MLR)-based models relating environ-
mental variables to community structure have
been proposed by some authors (Boudjema et al.,
1991) sometimes using non-linear transformations
of independent or/and dependent variables to im-
prove results (Vegter et al., 1988; Cancela Da
Fonseca, 1991). Even so, the results have often
remained insufficient, with a low percentage of
variance explained. On the other hand, it has been
shown that ANN can efficiently model non-linear
systems in ecology (Lek et al., 1996b; Scardi,
1996). In the present study, we apply this method
to relate the structure and diversity of an assem-
blage of hydrophilous Collembola to microhabitat
characteristics. Hydrophilous Collembola often
constitute the most abundant and diversified
arthropods in a large range of wet habitats (De-
harveng and Lek, 1995). As such, and because
their specific richness is relatively constant along
the year as long as water is present, they may
provide an interesting raw material to evaluate
predictive methods in population ecology.
Though it does present sound data on the struc-
ture of hydrophilous assemblages of Collembola,
this case study should be seen first as an attempt
to develop predictive tools that are urgently
needed for the study and the monitoring of
biodiversity.

2. Material and sampling methods

2.1. Study sites and sampling

The studies were undertaken at the site of
Ruau, located in the Northern Pyrenees (Arbon,
Haute Garonne, France) at an altitude of 784 m.
A small permanent spring used for watering live-
stock flows at the foot of a steep 3-m high slope
covered with small trees. Above are large mead-
ows on deep soils. We selected four transects
perpendicular to the streamlet, each with four
sample points at increasing distance from the
water. The distance was 1.50 m between transects
and 0.20–0.40 m between sample points on a
transect, with the starting points 0–5 cm from the
streamlet. Sampling was carried out every 2
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months at 12–16 points from December 1993 to
December 1994, for a total of 104 samples. The
lowest points were sampled at all sampling peri-
ods, but the distal row was only occasionally
sampled. Each sample was a substrate core of
125 cm3. Extraction by Berlese technique lasted
2 weeks, until complete drying of the substrate.
The animals were preserved in alcohol and
sorted under the stereo-microscope. The Collem-
bolan specimens not directly identifiable were
mounted in Marc-André II after clearing in lac-
tic acid, and examined with a Nachet 300 mi-
croscope under interferential contrast. After
identification, the adult and juvenile individuals
of each species were counted. After completion
of the faunistic analysis, six variables describing
the community structure were retained for
each sample: abundance of Collembola (total
number of specimens), species richness (total
number of species), relative abundance of the
three dominant species (Isotomurus cassagnaui
[Icas], I. prasinus [Ipra] and Brachystomella
par6ula [Brp]), and Shannon diversity index
(Table 1). Two of these species are strictly hy-
drophilous, while the third one, Brp, has both
hydrophilous populations (Deharveng and Lek,
1995) and merely open habitat populations
(Ponge, 1993).

Seven environmental variables were selected to
describe the studied habitats (Table 1), on the
basis of their known or supposed biological im-
portance. Temperature and water content, which
have a strong impact on most insects, including
soil species (Boudjema et al., 1991; Argyropoulou
et al., 1993; Deharveng and Bedos, 1993), both
showed large fluctuations during the year at
Ruau, with patterns varying with the spatial loca-
tion of the sample points. The relative importance
of mineral soil, litter, moss and rotten wood in the
substrate has rarely been investigated so far (De-
harveng and Lek, 1995), although it is a long
established fact that specialized assemblages oc-
cupy each of these four substrates (Linnaniemi,
1907; Ponge, 1980; Weiner, 1981).

Distance to water and soil temperature were
recorded in situ at the sampling points. Water
content (= fresh weight−dry weight of the sam-
ple) was measured in the laboratory. The propor-
tion of the different elements of the substratum
(mineral soil, moss, litter and rotten wood) was
visually estimated and assigned to five ordinal
classes defined by their upper limits: absent (0),
present up to 25% in volume (1), from 25 to 50%
in volume (2), from 50 to 75% in volume (3),
more than 75% in volume (4). Volumes were
preferred to weights in this estimation because of

Table 1
Independent (i) and dependent (d) studied variables with methods of measurement

Methods of measurementAbbreviatedTypeVariable

iDistance to water WAT In situ, with ribbon centimetre
iTemperature TEM In situ, with digital thermometer
i HUMWater content Fresh weight-dry weight of substratum

Proportion of mineral soil in the substratum (visual estimated)iMiner MIN
iMoss MOS Proportion of moss in the substratum (visual estimated)
iDecaying leaves LIT Proportion of dead leaves in the substratum (visual estimated)
i WOODecaying wood Proportion of rotten wood in the substratum (visual estimated)

Number of Isotomurus cassagnaui in the sample (counted under binocular loupe)IcasdIsotomurus cassag-
naui

Number of Isotomurus prasinus in the sample (counted under stereomicroscope)Isotomurus prasinus Iprad
Brp Number of Brachystomella par6ula in the sample (by counting in stereomicro-Brachystomella d

scope)par6ula
Count by stereomicroscoped NindTotal abundance of

Collembola
Identification by stereomicroscoped SRSpecies richness

SI SI=−p*log(p)dShannon index
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the very large differences in density and spatial
structure (i.e. spaces available for animals) of the
substrates.

2.2. Technique of modelling

We analyzed our data set with: (i) the tradi-
tional method of multiple linear regression
(MLR), to obtain a predictive model of reference;
(ii) optimal non-linear transformation using the
SAS Transreg procedure (SAS Institute, 1988; this
procedure seeks an optimal transformation of
variables, using a method of alternating last
squares, a B-spline transformation); (iii) an artifi-
cial neural network (ANN) method, to evaluate
the performance of this recent method in non-lin-
ear modelling. To compare these three methods
the whole set of available data was used. To
justify the predictive capacity of ANN and MLR
methods, modelling was carried out in two steps.
First, to fit the models, the matrix (104 records×
7 environmental variables) was used to perform
the MLR, the alternating last squares and the
ANN methods. The correlation coefficient be-
tween observed and predicted values was used to
quantify the capability of models to produce the
right answer through the training procedure. Sec-
ond, to test the ANN models, we selected at
random a training set (80% of the records, i.e. 83)
and a validation set (20% of the records, i.e. 21).
This operation was repeated three times giving
rise to test 1, test 2 and test 3 which we studied by
ANN and MLR. For each of the three sets, the
model was determined with the training set and
then validated with the test set. The quality of the
model was judged through the correlation be-
tween observed and predicted values in the valida-
tion set.

For classical statistical analysis, univariate,
bivariate and multivariate analyses were per-
formed by the SPSS Software release 6.0 (Norusis,
1993). The univariate analyses estimated the
mean, standard deviation, coefficient of variation,
minimum, maximum, median and quartiles. In
bivariate analyses we studied the correlation be-
tween variables using Pearson correlation coeffi-
cients (values and probabilities of significance at 5
and 1% of confidence intervals). In multivariate

Fig. 1. Representation of the structure of the neural network
used. Seven input nodes (I), five hidden layer nodes (H) and
one output node (O) are shown. WAT, distance to water;
TEM, soil temperature; HUM, water content in the substra-
tum; MIN, proportion of mineral soil in the substratum;
MOS, proportion of moss in the substratum; LIT, proportion
of litter in the substratum; WOO, proportion of wood in the
substratum.

analyses, MLR procedures were applied. Exami-
nation of studentized residuals for normality, in-
dependence and homogeneity was used to test the
validity of the models.

For ANN modelling, the classic multilayer
feed-forward neural network was used throughout
the analyses. The processing elements in the net-
work, called neurons are arranged in a layered
structure (a typical three-layer network is shown
in Fig. 1). The first layer, called the input layer,
connects with the input variables. In our case, it
comprises seven neurons corresponding to the
seven habitat variables. The last layer, called the
output layer, connects to the output variables. It
comprises a single neuron which gives the value of
the dependent variable to be predicted. The layers
between the input and output layers are called the
hidden layers. There can be one or more hidden
layers and the number of neurons in each layer is
an important parameter of the network. The net-
work configuration is determined empirically by
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testing various possibilities and selecting the one
that provides the best compromise between bias
and variance (Geman et al., 1992; Kohavi, 1995).
In our study, a network with one hidden layer of
five neurons was selected for each of the six
dependent variables studied.

Each neuron is connected to all neurons of
adjacent layers (neurons within a layer and in
non-adjacent layers are not connected). Neurons
receive and send signals through these connec-
tions. In feed-forward networks, signals are trans-
mitted only in one direction: from input layer to
output layer through hidden layers (no feed-back
connections are permitted). Connections are given
a weight which modulates the intensity of the
signal they transmit.

Training the network consists in using a train-
ing data set to adjust the connection weights in
order to obtain the best fit between expected and
observed values. This training was performed ac-
cording to the back-propagation algorithm
(Rumelhart et al., 1986). The connection weights,
initially taken at random in the range [−0.3, 0.3],
are iteratively adjusted by a method of gradient
descent based on the difference between the ob-
served and expected outgoing signals. Many itera-
tions are necessary to guarantee the convergence
of estimated values toward their expectations,
without obtaining an overfit, i.e. incapability of
the model to generalize (Smith, 1994). The com-
putational program was realized in Matlab envi-
ronment and computed with an Intel Pentium
processor.

Input data have orders of magnitude that differ
greatly according to the variables. So as to stan-
dardize the measurement scales, inputs were con-
verted into standardized variables. The dependent
variable was also scaled in the range [0…1] to
adapt it to the demands of the transfer function
used (sigmoid function).

2.3. Sensiti6ity of independent 6ariables

A disadvantage of ANN in comparison with
MLR models is their lack of explanatory power.
MLR analysis can identify the contribution of
each individual input in determining the output
and can also give some measures of confidence for

the estimated coefficients. On the other hand,
there is currently no theoretical or practical way
of accurately interpreting the weights in ANN.
For example, weights cannot be interpreted as
regression coefficients nor easily used to compute
causal impacts or elasticities. Therefore, ANN are
generally suited for forecasting or prediction
rather than for explanatory analysis. But in ecol-
ogy it is necessary to be able to explain the impact
of the variables. To illustrate the importance of
explanatory variables inside the ANN, Garson
(1991) and Goh (1995) proposed a procedure for
the partitioning of the neural network connection
weights in order to determine the relative impor-
tance of the various input variables. Lek et al.
(1995, 1996a,b) have built an algorithm allowing
the visualization of the profiles of explanatory
variables. In this work, an experimental approach
has been used to determine the response of the
model to each input variable separately by apply-
ing the technique described by Lek et al.
(1996a,b).

3. Results

The 104 samples contained a total of 11 637
specimens of Collembola of which 11 312 were
identified at species level, representing 55 species.
Hydrophilous species were dominant in number
with Icas, 2658 specimens i.e. 22.8% of the total,
Ipra, 1272 specimens i.e. 10.9% and Brp, 1170
specimens i.e. 10%. However, Brp was present in
a higher proportion of samples (66.35% occur-
rence) than the two other species (about 30%
occurrence). Large variations in abundance of
these three species were observed between samples
(Table 2), with a high coefficient of variation (188,
237 and 309% for Brp, Icas and Ipra,
respectively).

All samples contained Collembola. Mean spe-
cies richness was 10.64 (SD=3.75, N=104). This
is a low diversity compared to forest litter habitats
in the same area where over 15 species are
recorded on average for samples of the same size,
but similar to values obtained in wet habitats at
another Pyrenean site, the Arize mountain (9.2
with SD=4.50 and N=60, Deharveng and Lek,
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1995). However, as the sample volume was only
125 cm3 at Ruau, but 250 cm3 in Arize, the former
site is significantly richer, probably in relation to
its lower elevation. Species richness and Shannon
index were relatively stable with coefficients of
variation below 37%. The abundance of Collem-
bola, with a coefficient of variation of 84%,
reflects fairly large seasonal and spatial fluctua-
tions, but remains well under the variation level of
the hydrophilous species of the assemblage.

Among environmental variables, much of the
variation was due to the seasonal cycle (particu-
larly temperature: 9.48°C (SD=3.8), with a mini-
mum of 3.9°C in February, and a maximum of
17.8°C in August). The largest variations were
observed for litter and rotten wood content of the
substrate (CV=122 and 175%, respectively), in-
dependently of the season.

3.1. Correlation between assemblage
characteristics and en6ironmental 6ariables

Among the environmental variables (Table 3),
correlation coefficients are significant or highly
significant in most cases but with relatively low
values: only three correlations above �0.5� (PB
0.001) were observed, involving MIN, MOS,
HUM and WAT. Some correlations between in-
dependent and dependent variables are highly sig-

nificant: Icas with HUM, WAT and MOS; Ipra
with HUM and WAT; Nind with HUM and
WAT; SI with WAT. Water content and distance
to water therefore appear as major determinants
of assemblage characteristics. Other correlations
were significant at a lower level (Brp and TEM,
Nind and MIN, SR and TEM, SI and TEM) and
most (30) were not significant. In particular, spe-
cies richness was very poorly related to environ-
mental variables.

Among the dependent variables, a high correla-
tion was found between Nind and the abundance
of each of the two most abundant species (r=
0.71 for Icas, r=0.70 for Ipra) indicating the
numerical importance of these species in the com-
munity. The correlation was even higher between
SI, the Shannon index, and SR, one of the mea-
sures on which it is built (r=0.76, PB0.001).
Correlation between Icas and Ipra was relatively
high (r=0.53, PB0.001) reflecting their strong
dependence on water. Brp was conversely poorly
related to Icas (r= −0.10, P=0.293) or Ipra
(r= −0.10, P=0.327). Other highly significant
correlations were between SR and Brp, between
SI and Icas and between SR and Icas. Correla-
tions were weaker with the other variables; the
low value of correlation between species richness
and the total number of Collembolan specimens is
particularly noticeable.

Table 2
Summary statisticsa

Minimum Q1 Median Q3 Maximum Mean SD CV%

3.9 40.083.8TEM 9.486.5 17.811.958.45
3.6HUM 18.8636 52.3989.446.5534.525.4

89.1531.8935.7710050202.50WAT
41.050 2 2 2 4 1.9 0.78MIN

0.89 73.551MOS 10 2 3 1.21
121.670 0 0 1 3 0.6 0.73LIT

WOO 175.000.490.2821000
21.1811.2511312 188.27200Brp
60.69 237.440 0 4 296Icas 25.560

0 0 0 1Ipra 275 12.23 37.79 308.99
81 35.24SR 3.7510.64211311

84.2294.23111.89Nind 5611 149.57453
0 1.94SI 2.45 2.92 3.51 2.26 0.83 36.73

a SD, standard deviation; CV%, coefficient of variation in percentage; Q1, Q3, first and third quartile.
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Table 3
Pearson correlation coefficient matrix between studied variables

LIT WOO Brp Icas Ipra SRTEM NindHUM WAT MIN MOS

−0.41**HUM
WAT 0.01 −0.55**
MIN 0.23* −0.25* 0.36**
MOS −0.21* 0.47** −0.50** −0.63**

−0.38**LIT −0.29**0.16−0.18−0.16
−0.27**0.25* −0.36**−0.21* 0.11 0.02WOO

0.03 −0.030.12Brp −0.140.08−0.10−0.25*
−0.09 −0.11 −0.10Icas −0.06 0.46** −0.45** −0.15 0.26**

0.02 −0.11 −0.10 0.53**0.02Ipra −0.06−0.30**0.30**−0.11
0.18SR −0.05−0.24* 0.35** −0.28** −0.040.00 0.14 −0.17 0.02
0.18 −0.12 0.22* 0.71** 0.70** 0.150.11−0.24*Nind −0.15 0.36** −0.32**
0.15SI −0.05−0.22** 0.11 −0.52** −0.14 0.76** −0.16−0.14 0.30** 0.08 −0.17

* Significant (PB0.05).
** Highly significant (PB0.01).
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Table 4
Multiple linear regression between parameters of Collembolan assemblages and environmental variablesax

Icas IpraBrp SR Nind SI

0.277** −0.083TEM −0.212−0.279* −0.001 −0.276*
0.470** 0.187 −0.027 0.307*HUM −0.123−0.157

−0.196 −0.296* 0.1860.080 −0.212WAT 0.213
0.078MIN 0.305 −2.016** −0.917 −0.805 −0.410
0.300MOS 0.375 −2.547** −0.866 −0.942 −0.544

0.365 −1.903** −0.6520.122 −0.477LIT −0.379
0.174 −1.251** −0.475 −0.437 −0.306WOO 0.120

a The models shown the standard coefficients of seven independent variables with their significant level.
* Significant at 0.05.
** Significant at 0.01.

3.2. Multiple linear regression (MLR) analysis

For the 104 samples, the MLR procedure us-
ing the 7 independent variables gives the follow-
ing coefficients of multiple correlation: with Brp,
R2=0.10 (F7, 96=1.55, P=0.17); with Icas,
R2=0.32 (F7, 96=6.53, PB0.001); with Ipra,
R2=0.22 (F7, 96=3.91, PB0.001); with SR,
R2=0.13 (F7, 96=2, P=0.07); with Nind, R2=
0.24 (F7, 96=4.22, PB0.001); with SI, R2=0.16
(F7, 96=2.65, P=0.02). Low correlation coeffi-
cients reflect the low percentages of explained
variance (less than 33% for all studied vari-
ables). With log(x+1) transformation of vari-
ables, we obtained R2 equal to, respectively
0.29, 0.64, 0.28, 0.31, 0.40 and 0.32 for Brp,
Icas, Ipra, SR, Nind and SI. All models were
highly significant (PB0.001). Values of determi-
nation coefficients indicate a clear improvement
of MLR models after non-linear transformation
of variables. As this operation improves their
linearity, we can conclude that non-linear rela-
tionships exist between the dependent and inde-
pendent variables. Thus, a method based on
alternating last squares was used to try to lin-
earise the variables. With the Transreg proce-
dure in SAS Software after maximum
transformation of variables using the B-spline
function, we obtained a squared multiple corre-
lation equal to 0.41, 0.67, 0.47, 0.55, 0.49 and
0.48 for Brp, Icas, Ipra, SR, Nind and SI, re-
spectively, i.e. a significant improvement of
model quality.

Returning to the results of the MLR analysis,
we give in Table 4 the standard coefficients of
seven independent variables for the six depen-
dent variables characterizing the Collembolan
assemblage. Except in the SR model where none
of the variables were significant, other models
had at least one significant variable. The maxi-
mum was recorded for Ipra with five significant
variables (Table 4).

3.3. Artificial neural network (ANN)

We used an ANN of one hidden layer of five
neurons with seven independent variables, i.e. a
7-5-1 neural network (46 parameters in total: 7×
5+5+6). Results after 500 iterations of the
training procedure are presented in Fig. 2. The
correlation coefficient (r) between observed and
estimated values was close to 1 for Icas, Ipra, Brp
and Nind (r=0.996, r=0.965, r=0.944 and r=
0.914, respectively, PB0.001). The lowest correla-
tion coefficients were observed for SR and SI
(r=0.847 and r=0.872, respectively, PB0.001).
The ANN therefore gave satisfactory results prac-
tically over the whole range of values of the
dependent variables (Fig. 2). For the variables
which represent species abundances (Icas, Ipra,
Brp and Nind) most points were well aligned on
the perfect fit diagonal (coordinates 1:1). Al-
though poorly represented, the strong values of
the output variable are clustered around this same
perfect line. Only a few points lie far off, with
some weak values slightly underestimated (Ipra
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and Brp). For the remaining dependent variables
SR and SI, which measure assemblage diversity,
fitting is acceptable in spite of poorer results.

The sensitivity of the seven independent habitat
variables on the six dependent variables obtained
from ANN modelling is illustrated in Fig. 3. The
12 points cover the range of variation of each of
the variables tested, with a class interval which
was modified according to the variables. As illus-
trated in Fig. 3, we can distinguished seven sensi-
tivity types:
� Exponential contribution: the independent

variables contribute only at their low values.
This is the case of WAT and MIN for Icas, and
MOS, WAT and TEM for Ipra.

Fig. 3. Contribution profile for each independent variable to
the determination of assemblage characteristics of Collembola
fauna by ANN. Icas (Isotomurus cassagnaui ), Ipra (Isotomurus
prasinus), Brp (Brachystomella par6ula), Nind (Total abun-
dance of Collembola), SR (species richness), SI (Shannon
index). The abscissa represents the 12 variation intervals of the
independent variables between their minimum and their maxi-
mum.

Fig. 2. Correlation graph between observed values and values
estimated by the model. The solid line indicates the perfect fit
line (coordinates 1:1). (a) Icas (Isotomurus cassagnaui ); (b)
Ipra (Isotomurus prasinus); (c) Brp (Brachystomella par6ula);
(d) Nind (total abundance of Collembola); (e) SR (species
richness); (f) SI (Shannon index).

� Gaussian contribution: the independent vari-
able affects the dependent variable mostly
around its average value, and has little influ-
ence at extreme values. This is the case of
HUM for Icas, HUM and WOO for Ipra,
WAT and WOO for Brp, LIT, TEM and
HUM for Nind, and TEM and HUM for SI.

� Increasing contribution: dependent variable is
low for low values of the independent variable
and increases to a maximum at high values.
This was observed for MOS for Brp abun-
dance, HUM and WAT for SR, WOO for
Nind, and WAT for SI.

� Decreasing contribution: dependent variable is
relatively high at low values of the independent
variable and decreases gradually afterwards.
This was the case of TEM for Icas, MIN and
LIT for SR, and MOS, MIN, WOO and LIT
for SI.
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� Skewed-to-the-left curve: the dependent vari-
able is high only for high values of the indepen-
dent variable. This sensitivity type was
observed only for MOS to explain the abun-
dance of Icas.

� Skewed-to-the-right curve: the dependent vari-
able is high for low values of these independent
variables; it decreases more or less rapidly af-
terwards to become virtually null thereafter.
This contribution is present only for Brp abun-
dance for four environmental parameters
(TEM, HUM, LIT and MIN).

� Weak contribution: the contribution of the in-
dependent variable is very low, and not altered
over its range, with a profile represented by a
quasi-horizontal line. This is the case of WOO
and LIT for Icas, and TEM, MOS and WOO
for SR.

3.4. Test of the models

To test the variability, the prediction power of
the different models determined from three train-
ing fractions was tested on three independent test
fractions (Table 5). The lowest correlation be-
tween observed and predicted values was obtained
for SR (r=0.66–0.82, PB0.001) and SI (r=
0.79, PB0.001). Correlations for Nind and Brp
(r=0.80–0.87, PB0.001 and r=0.84–0.90, PB
0.001) were higher. The best results were obtained
with Icas (r=0.95–0.99, PB0.001) and Ipra (r=
0.88–0.98, PB0.001), like in the models based on
the complete set of 104 samples. The same tests

Table 6
Correlation coefficient between observed and predicted values
by MLR-models for three independent testing sets for the six
studied parameters of Collembolan assemblages

Training set Testing set

1 2 3Set no. 1 2 3

0.464 0.347 0.551 0.427Brp 0.461 0.413
0.559 0.531 0.574Icas 0.275 0.566 0.242

Ipra 0.2870.5150.1610.6100.5820.630
0.3490.0810.331 0.4730.3420.402SR

Nind 0.574 0.527 0.565 0.301 0.556 0.194
0.5110.426 0.053 0.266SI 0.494 0.460

realized with MLR-models (Table 6) give clearly
inferior results (maximum correlation coefficient
equal to 0.57 for Icas in the second test set).

On the whole, the coefficients in the training set
were nearly identical to those of the models based
on 104 samples. These results indicate a great
stability (small standard deviations) of the predic-
tion performance of the ANN models for differ-
ent testing sets. The small decrease in
performance in the test set compared to the train-
ing set can be related to the small size of the data
set combined with the fact that each sample is
likely to have some kind of unique information
that is relevant to the model. The correlation
coefficients were clearly not as low when the data
were analyzed by MLR, in particular for Shannon
index and specific richness.

4. Discussion

Two kinds of results emerge from this study:
those related to the artificial neural network
methodology and its ability to predict the charac-
teristics of a species assemblage; and those related
to the ecology of hydrophilous Collembola, which
are of interest for Collembologists and wet habitat
ecologists. MLR, spline regression and backprop-
agation of the ANN were applied on the same
dataset with the aim to develop stochastic models
of biodiversity prediction, using Collembolan as-
semblages and habitat features on a microhabitat
scale. The backpropagation procedure of the

Table 5
Correlation coefficient between predicted and observed values
by ANN models for three independent testing sets for the six
studied parameters of Collembolan assemblages

Training set Testing set

2Set no. 132 31

0.986Icas 0.9900.990 0.990 0.950 0.956
0.985 0.990 0.8890.8770.979Ipra 0.990
0.883 0.938 0.935Brp 0.904 0.8540.843

0.700 0.8230.8340.8510.864SR 0.656
0.946 0.9060.940Nind 0.7970.8200.865
0.9010.865SI 0.796 0.7980.879 0.789
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ANN gave much higher correlation coefficients
than other methods. This may point to the pre-
dominantly non-linear relationships between the
studied variables on the one hand, and on the
other hand the ability of ANN to directly take
into account any non-linear relationships between
the dependent variables and each independent
variable (Lek et al., 1996b). These results are in
agreement with literature data, where perfor-
mances of ANN have been repeatedly reported to
overpass those of more traditional method such as
MLR (Ehrman et al., 1996; Lek et al., 1996b;
Scardi, 1996). However, the comparison between
the predictive power of MLR and that of ANN is
not quite fair, in particular as the number of
parameters is different. In any case, ANN consti-
tutes a new and powerful alternative in predictive
ecological modelling, where poor fitting of biolog-
ical characteristics to conventional models (mostly
MLR) is often the rule.

Collembola are often the dominant group of
Arthropods in wet habitats, yet literature refer-
ences related to the ecology of hydrophilous spe-
cies are scarce. On these grounds, it is hardly
surprising that a large amount of novel informa-
tion has been generated by the present study.
Most characteristics of the Collembolan assem-
blages studied have been satisfyingly fitted to
measured environmental parameters through
ANN analysis. Variations in abundance among
dominant species (Icas, Ipra, Brp) are in particu-
lar strongly connected to a set of environmental
variables: temperature, distance to water, struc-
ture of the substratum and type of organic matter.
A second important finding is the complexity of
the response of Collembolan assemblages to
changes in environmental parameters, so far
largely overlooked in the relevant literature (e.g.
Van Straalen, 1994). On the whole, emerging pat-
terns of species abundance response to environ-
mental parameter fluctuations appear both mostly
non-linear and very heterogeneous, in spite of the
high ecological similarity of the studied species.
Some factors are clearly predominant, but they
are not the same for the different measured bio-
logical variables. Conversely, sensitivity of species
richness and Shannon index often follow similar
patterns for different environmental variables,

making it difficult to detect which one(s) is (are)
the driving factors (Fig. 3). Nevertheless, there are
some positive outcomes of this study, that are
summarized below.
1. An unexpected result is that distance to free

water has more impact than water content of
the substrate for hydrophilous species abun-
dance. Distance to water is weakly correlated
to water content on the scale of our study
because of its independence from season, local
microtopography and superficial water circula-
tion. Isotomurus species in particular experi-
ence an abrupt numerical decrease as soon as
their distance to water increases. Their abun-
dance peaks for medium-range water content.
In contrast, B. par6ula abundance reaches its
maximum value at medium distance to water
and medium water content, in agreement with
empirical observations suggesting that its
stenohygry is lower than that of Isotomurus
(Deharveng and Lek, 1995). The overall abun-
dance of Collembola follows yet another pat-
tern which is likely to be explained by the
strong impact of non-hydrophilous species,
not documented in detail in this paper.

2. Distance to water has a slight but positive
impact on biodiversity indices on our study
scale, reflecting a more general trend of in-
creasing species richness from water edge to
mesophilous litter (Deharveng and Lek, 1995).
The decreasing saturation of the mineral part
of the substrate on this gradient gradually
gives more micro-voids and new microhabitats
for colonization by terrestrial mesofauna, and
may contribute to the observed patterns.

3. Water content of the substrate is known to
have an overwhelming importance for Collem-
bolan populations (Vannier and Verhoef,
1978; Verhoef and Witteveen, 1980) but stud-
ies are lacking at the community level. Accord-
ing to Vegter et al. (1988), moisture
heterogeneity has a strong influence on the
abundance of epigeomorphic Collembola, but
not on the assemblage structure. In our study,
both abundance and assemblage structure
were clearly affected by variations in water
content of the substrate.
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4. Surprisingly large differences were observed
among species in response to variations of the
studied variables (Fig. 3). The impact of tem-
perature, the most documented environmental
variable (Hopkin, 1997) is different on differ-
ent ecological categories of Collembola as al-
ready stated in the literature (Van Straalen
and Joosse, 1985; Van Straalen, 1994). In the
present study, it further appears that, even
among the same ecological category, species
response may strongly vary between the most
strictly hydrophilous species (Icas and Ipra)
and those less so (Brp). The relationship of
temperature to overall abundance of the hy-
drophilous Collembola assemblages still fol-
lows another pattern which is not that of these
dominant species. The same comments also
apply to other variables, particularly water
content and mineral soil content of the sub-
strate for which even the profiles of the two
most hydrophilous species strongly diverge. A
direct implication of these results is that ex-
trapolation of ecological information from sin-
gle, even dominant, species to communities
may be strongly misleading: communities may
be highly heterogeneous assemblages even at a
relatively narrow functional level.

5. The relationships between environmental vari-
ables and biological parameters characterizing
living communities have rarely been evaluated
in the literature related to soil science. Boud-
jema et al. (1991) expresses these relations as a
polynomial function, with pH and temperature
as driving variables. Van Straalen (1994) re-
ported a correlation between egg development
and a measure of enzyme activity linked to
temperature. But correlations, when measured,
remained fairly low in all documented cases.
The ecological profiles obtained from ANN
models (Fig. 3) clearly exhibit the complexity
and non-linearity of interacting processes,
which may account for the difficulty in pre-
dicting species and community responses using
traditional methods.

6. Intuitively, soil ecologists are aware of the
prime importance of ligneous material for soil
living assemblages, but this variable is rarely if
ever taken into account in the literature. The

same could be said for decaying leaves or moss
content of the substrate. The classical mea-
sures of organic matter do not give any infor-
mation on the relative proportion of these
three elements, though it is likely to be of
higher biological significance than overall
amount of organic matter itself. By introduc-
ing these variables in our analysis, we expected
to obtain some sound information about their
influence on species abundance and assem-
blage structure. The results were, in fact,
difficult to interpret. No influence was detected
on the profiles of Icas, the most water-depen-
dent species of the assemblage, and only a
limited one on Ipra. The less strictly hy-
drophilous species Brp appeared more sensi-
tive to these variables. Unexpectedly, increase
in leaf litter and wood content of the substrate
were associated with decreasing biodiversity,
in apparent contrast to the usual (but again
poorly documented) trend of increasing biodi-
versity from open to forested habitats. An
appealing hypothesis is that leaf and wood
litter is less important in wet habitat than in
mesophilous habitats, because decomposition
processes are less active in water or water-sat-
urated substrate, providing a lower diversity of
fungal species on which most Collembola feed.

Is it finally possible to predict the level of
biodiversity of a living group from environmental
variables? Because they largely control the pres-
ence and abundance of individual species, envi-
ronmental variables necessarily contribute to the
control of community structure, hence of biodi-
versity. Hard data, are however, lacking to sup-
port this commonplace statement in soil
ecosystems and previous attempts to detect simple
and linear relationships between edaphic factors
and diversity have failed to give clear-cut results
(for instance in tropical Collembolan assemblages,
Deharveng and Bedos, 1993). Three reasons (or a
combination of these) may explain this failure: (i)
the pertinent variables have not been identified;
(ii) interactions between species play a major role;
and (iii) relationships between abiotic factors and
biodiversity are non-linear. This last hypothesis
was considered here. The results obtained indicate
that species interaction, or consideration of addi-
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tional variables, is not needed to satisfactorily
predict the characteristics of the observed assem-
blage patterns. Several parameters relevant to bio-
diversity were efficiently predicted by the
ANN-based models in the studied community.
Additional data sets, experimental manipulations
and repeated mathematical analyses would be
necessary to assess this first result more firmly,
but the ANN has demonstrated here a promising
potential in the field of community ecology, as a
tool to evaluate, understand, predict and manage
biodiversity.
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