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Abstract

Artificial neural networks (ANNs) are non-linear mapping structures based on the function of the human brain.
They have been shown to be universal and highly flexible function approximators for any data. These make powerful
tools for models, especially when the underlying data relationships are unknown. In this reason, the international
workshop on the applications of ANNSs to ecological modelling was organized in Toulouse, France (December 1998).
During this meeting, we discussed different methods, and their reliability to deal with ecological data. The special
issue of this ecological modelling journal begins with the state-of-the-art with emphasis on the development of
structural dynamic models presented by S.E. Jorgensen (DK). Then, to illustrate the ecological applications of ANNSs,
examples are drawn from several fields, e.g. terrestrial and aquatic ecosystems, remote sensing and evolutionary
ecology. In this paper, we present some of the most important papers of the first workshop about ANNSs in ecological
modelling. We briefly introduce here two algorithms frequently used; (i) one supervised network, the backpropagation
algorithm; and (ii) one unsupervised network, the Kohonen self-organizing mapping algorithm. The future develop-
ment of ANNSs is discussed in the present work. Several examples of modelling of ANNSs in various areas of ecology
are presented in this special issue. © 1999 Elsevier Science B.V. All rights reserved.
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(Ackley et al., 1985), like expert systems (Brad-
shaw et al., 1991; Recknagel et al., 1994), genetic
algorithms (d’Angelo et al., 1995; Golikov et al.,
1995) and artificial neural networks, i.e. ANN

1. Introduction

Ecological modelling has grown rapidly in the
last three decades. To build his models, an ecolo-

gist disposes a lot of methods, ranging from nu-
merical, mathematical, and statistical methods to
techniques originating from artificial intelligence

* Corresponding author. Tel.: + 33-561-558687; fax: + 33-
561-556096.
E-mail address: lek@cict.fr (S. Lek)

(Colasanti, 1991; Edwards and Morse, 1995).
ANNs were developed initially to model biolog-
ical functions. They are intelligent, thinking ma-
chines, working in the same way as the animal
brain. They learn from experience in a way that
no conventional computer can and they can
rapidly solve hard computational problems. With
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the spread of computers, these models were sim-
ulated and later research was also directed at
exploring the possibilities of using and improv-
ing them for performing specific tasks.

In the last decade, research into ANNSs has
shown explosive growth. They are often applied
in physics research like speech recognition
(Rahim et al., 1993; Chu and Bose, 1998) and
image recognition (Dekruger and Hunt, 1994;
Cosatto and Graf, 1995; Kung and Taur, 1995)
and in chemical research (Kvasnicka, 1990;
Wythoff et al., 1990; Smits et al., 1992). In biol-
ogy, most applications of ANNs have been in
medecine and molecular biology (Lerner et al.,
1994; Albiol et al., 1995; Faraggi and Simon,
1995; Lo et al., 1995). Nevertheless, a few appli-
cations of this method were reported in ecologi-
cal and environmental sciences at the beginning
of the 90’s. For instance, Colasanti (1991) found
similarities between ANNs and ecosystems and
recommended the utilization of this tool in eco-
logical modelling. In a review of computer-aided
research in biodiversity, Edwards and Morse
(1995) underlined that ANNs have an important
potential. Relevant examples are found in very
different fields in applied ecology, such as mod-
elling the greenhouse effect (Seginer et al.,
1994), predicting various parameters in brown
trout management (Baran et al., 1996; Lek et
al., 1996a,b), modelling spatial dynamics of fish
(Giske et al., 1998), predicting phytoplankton
production (Scardi, 1996; Recknagel et al.,
1997), predicting fish diversity (Guégan et al.,
1998), predicting production/biomass (P/B) ratio
of animal populations (Brey et al., 1996), pre-
dicting farmer risk preferences (Kastens and
Featherstone, 1996), etc. Most of these works
showed that ANNs performed better than more
classical modelling methods.

2. Scope of this particular issue

The pressures to understand and manage the
natural environment are far greater now than
could ever have been conceived even 50 years
ago, with the loss of biodiversity on an unprece-
dented scale, fragmentation of landscapes, and

addition of pollutants with the potential of al-
tering climates and poisoning environments on a
global scale. In addition, many ecological sys-
tems present complex spatial and temporal pat-
terns and behaviours.

Recent achievements in computer science
provide unrivaled power for the advancement of
ecology research. This power is not merely com-
putational: parallel computers, having hierarchi-
cal organization as their architectural principle,
also provide metaphors for understanding com-
plex systems. In this sense, in sciences of ecolog-
ical complexity, they might play a role like
equilibrium-based metaphors had in the develop-
ment of dynamic systems ecology (Villa, 1992).

ANNs have recently become the focus of
much attention, largely because of their wide
range of applicability and the case with which
they can treat complicated problems. ANNs can
identify and learn correlated patterns between
input data sets and corresponding target values.
After training, ANNs can be used to predict the
output of new independent input data. ANNs
imitate the learning process of the animal brain
and can process problems involving very non-
linear and complex data even if the data are
imprecise and noisy. Thus they are ideally suited
for the modelling of ecological data which are
known to be very complex and often non-linear.

For this reason, we organized the first work-
shop on the applications of ANNs in ecological
modelling in Toulouse in December of 1998.
This special volume gathers some of the papers
presented.

3. What is an artificial neural network

An ANN is a ‘black box’ approach which has
great capacity in predictive modelling, i.e. all the
characters describing the unknown situation
must be presented to the trained ANN, and the
identification (prediction) is then given.

Research into ANNs has led to the develop-
ment of various types of neural networks, suit-
able to solve different kinds of problems:
auto-associative memory, generalization, opti-
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mization, data reduction, control and prediction
tasks in various scenarios, architectures etc.
Chronologically, we can cite the Perceptron
(Rosenblatt, 1958), ADALINE, ie. Adaptive
lincar element (Widrow and Hoff, 1960),
Hopfield network (Hopfield, 1982), Kohonen
network (Kohonen, 1982, 1984), Boltzmann ma-
chine (Ackley et al., 1985), multi-layer feed-for-
ward neural networks learned by
backpropagation algorithm (Rumelhart et al.,
1986). The descriptions of these methods can be
found in various books such as Freeman and
Skapura (1992), Gallant (1993), Smith (1994),
Ripley (1994), Bishop (1995), etc. The choice of
the type of network depends on the nature of
the problem to be solved. At present, two popu-
lar ANNs are (i) multi-layer feed-forward neural
networks trained by backpropagation algorithm,
i.e. backpropagation network (BPN), and (ii)
Kohonen self-organizing mapping, i.e. Kohonen
network (SOM). The BPN is most often used,
but other networks has also gained popularity.

3.1. Multi-layer feed-forward neural network
The BPN, also called multi-layer feed-forward

neural network or multi-layer perceptron, is very
popular and is used more than other neural net-
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work types for a wide variety of tasks. The
BPN is based on the supervised procedure, i.e.
the network constructs a model based on exam-
ples of data with known outputs. It has to build
the model up solely from the examples pre-
sented, which are together assumed to implicitly
contain the information necessary to establish
the relation. A connection between problem and
solution may be quite general, e.g. the simula-
tion of species richness (where the problem is
defined by the characteristics of the environment
and the solution by the value of species rich-
ness) or the abundance of animals expressed by
the quality of habitat. A BPN is a powerful
system, often capable of modelling complex rela-
tionships between variables. It allows prediction
of an output object for a given input object.
The architecture of the BPN is a layered feed-
forward neural network, in which the non-linear
elements (neurons) are arranged in successive
layers, and the information flows unidirection-
ally, from input layer to output layer, through
the hidden layer(s) (Fig. 1). As can be seen in
Fig. 1, nodes from one layer are connected (us-
ing interconnections or links) to all nodes in the
adjacent layer(s), but no lateral connections
within any layer, nor feed-back connections are
possible. This is in contrast with recurrent net-

X1 X2 Xi Xn Y1 Yk
sif 0 0 ... .. 0 . ... ... 0,0..0
s20 0 0 ... .. 0 ....... 0.0..0
30 0 ... .. 0 ... .. 0.0..0
suan'?lﬁ“"g Input data Output data

Fig. 1. Schematic illustration of a three-layered feed-forward neural network, with one input layer, one hidden layer and one output
layer. The right-hand side of the figure shows the data set to be used in backpropagation network models. X,,..., X,, are the input

variables, Y, ..., Y, are the output variables, S;, S,, S5, ...

are the observation data.
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works where feed-back connections are also per-
mitted. The number of input and output units
depends on the representations of the input and
the output objects, respectively. The hidden lay-
er(s) is (are) an important parameters in the net-
work. BPNs with an arbitrary number of hidden
units have been shown to be universal approxi-
mators (Cybenko, 1989; Hornick et al., 1989) for
continuous maps and can therefore be used to
implement any function defined in these terms.

The BPN is one of the easiest networks to
understand. Its learning and update procedure is
based on a relatively simple concept: if the net-
work gives the wrong answer, then the weights
are corrected so the error is lessened so future
responses of the network are more likely to be
correct. The conceptual basis of the backpropa-
gation algorithm was first presented in by Webos
(1974), then independently reinvented by Parker
(1982), and presented to a wide readership by
Rumelhart et al. (1986).

In a training phase, a set of input/target pat-
tern pairs is used for training and presented to
the network many times. After the training is
stopped, the performance of the network is
tested. The BPN learning algorithm involves a
forward-propagating step followed by a back-
ward-propagating step. A training set must have
enough examples of data to be representative for
the overall problem. However, the training phase
can be time consuming depending on the net-
work structure (number of input and output vari-
ables, number of hidden layers and number of
nodes in the hidden layer), the number of exam-
ples in the training set, the number of iterations
(see Box 1).

Typically, for a BPN to be applied, both a
training and a test set of data are required. Both
training and test sets contain input/output pat-
tern pairs taken from real data. The first is used
to train the network, and the second to assess the
performance of the network after training. In the
testing phase, the input patterns are fed into the
network and the desired output patterns are com-
pared with those given by the neural network.
The agreement or disagreement of these two sets
gives an indication of the performance of the
neural network model.

Box 1. A brief algorithm of backpropagation
in neural networks

(1) Initialize the number of hidden nodes

(2) Initialize the maximum number of itera-
tions and the learning rate (1). Set all
weights and thresholds to small random
numbers. Thresholds are weights with
corresponding inputs always equal to 1.

(3) For each training vector (input X, =
(x1,%5,...,X,), output Y) repeat steps 4-7.

(4) Present the input vector to the input
nodes and the output to the output node;

(5) Calculate the input to the hidden nodes:
al=xr_, W;’x,-. Calculate the output from
the hidden nodes: x/ = f(aj’»’)zm.

Calculate the inputs to the output nodes:

a, =3, ijx;? and the corresponding

1

l14+e %

Notice that k=1 and IA’k =Y, L is the
number of hidden nodes.

(6) Calculate the error term for the output
node: 6, =(Y— f’)f’(ak) and for the hid-
den nodes: 6/ =f’(aih)2k5k Wy

(7) Update weights on the output layer:

Wi (t+1) = W, (t1)+nd,x} and on the
hidden layer: W, (141)= W (1)+nd/x;

As long as the network errors are larger than

a predefined threshold or the number of itera-

tions is smaller than the maximum number of

iterations envisaged, repeat steps 4-7.

outputs: Y, =f(a,)=

Another decision that has to be taken is the
subdivision of the data set into different sub-sets
which are used for training and testing the
BPN. The best solution is to have separate data
bases, and to use the first set for training and
testing the model, and the second independent
set for validation of the model (Mastrorillo et
al., 1998). This situation is rarely observed in
ecology studies, and partitioning the data set
may be applied for testing the validity of the
model. We present here two partitioning proce-
dures:
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1. if enough examples of data sets are available,
the data may be divided randomly into two
parts: the training and test sets. The propor-
tion may be 1:1, 2:1, 3:1, etc. for these two
sets. However, the training set still has to be
large enough to be representative of the
problem and the test set has to be large
enough to allow correct validation of the
network. This procedure of partitioning the
data is called k-fold cross-validation, some-
times named the hold-out procedure (Utans
and Moody, 1991; Geman et al., 1992; Efron
and Tibshirani, 1995; Kohavi, 1995; Kohavi
and Wolpert, 1996; Friedman, 1997).

2. if there are not enough examples available to
permit the data set to be split into represen-
tative training and test sets, other strategies
may be used, like cross-validation. In this
case, the data set is divided into n parts usu-
ally small, i.e. containing few examples of
data. The BPN may now be trained with
n—1 parts, and tested with the remaining
part. The same network structure may be
repeated to use every part once in a test
set in once of the n procedures. The result
of these tests together allow the performance
of the model to be determined. Sometimes,
in extreme cases, the test set can have only
one example, and this is called the leave-one-
out or sometime Jacknife procedure (Efron,
1983; Kohavi, 1995). The procedure is often
used in ecology when ecither the available
database is small or each observation is
unique information and different to the oth-
ers.

3.2. Kohonen self-organizing mapping (SOM)

Kohonen SOM falls into the category of un-
supervised learning methodology, in which the
relevant multivariate algorithms seek clusters in
the data (Everitt, 1993). Conventionally, at least
in ecology, reduction of multivariate data is nor-
mally carried out using principal components
analysis or hierarchical clustering analysis (Jong-
man et al., 1995). Unsupervised learning allows
the investigator to group objects together on the
basis of their perceived closeness in n dimen-

sional hyperspace (where n is the number of
variables or observations made on each object).

Formally, a Kohonen network consists of two
types of units: an input layer and an output
layer (Fig. 2). The array of input units operates
simply as a flow-through layer for the input vec-
tors and has no further significance. In the out-
put layer, SOM often consist of a two-
dimensional network of neurons arranged in a
square (or other geometrical form) grid or lat-
tice. Each neuron is connected to its n nearest
neighbours on the grid. The neurons store a set
of weights (weight vector) each of which corre-
sponds to one of the inputs in the data. The
SOM algorithm can be characterized by several
steps (see Box 2).

Box 2. A brief algorithm of self-organizing
mapping neural networksLet a data set of ob-
servations with n-dimensional vectors:

Initialise the time parameter ¢: ¢ =0.

(1)  Initialise weights W, of each neuron j in
the Kohonen map to random values (for
example, random observations).

(2)  Present a training samplex(z) =
[x,(?),...,x,(t)] randomly selected from
the observations.

(3) Compute the distances d; between x and
all mapping array neurons j according
to: di(t) = Z;_ \[x;(t)— W,(1)]* where
x;(t) is the i*" component of the N di-
mensional input vector and W(t) is the
connection strength between input neu-
ron i and map array neuron j at time ¢
expressed as a Euclidean distance.

(4)  Choose the mapping array neuron j*
with minimal distance d;+: d;+(1) =
min[d;(¢)].

(5)  Update all weights, restricted to the ac-
tual topological neighbourhood NE;.(¢):
Wi(t+1) = W)+ (D)6, (0) — Wy (1)
for je NE;.«(t) and 1<i<n. Here
NE;.(t) is a decreasing function of time,
as is the gain parameter #(¢).

(6)  Increase the time parameter ¢

(7)) If t<t,,, return to step 2
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Fig. 2. A two-dimensional Kohonen self-organizing feature map network. The right-hand side shows the data set to be used in

Kohonen self-organizing mapping models. X;, ..., X,, are the input variables, S;, S,, S;, ...

Since the introduction of the Kohonen neural
network (Kohonen, 1982, 1984), several training
strategies have been proposed (see e.g. Lipp-
mann, 1987; Hecht-Nielsen, 1990; Freeman and
Skapura, 1992) which deal with different aspects
of the use of the Kohonen network. In this sec-
tion, we will restrict the study to the original
algorithm proposed by Kohonen (1984).

4. Overview of the presented papers

During the three days of the workshop on
ANN applications in ecology, 45 oral communi-
cations and posters were presented. They were
thoroughly discussed by 100 or so participants
coming from 24 countries. The session started
with the general review °‘state-of-the-art of eco-
logical modelling with emphasis on development
of structural dynamic models’ (Jorgensen, see
paper in the next chapter). Then applications of
ANNs in several fields of ecology were pre-
sented: primary production in freshwater and
marine ecosystems (seven papers), remote sens-

are the observation data.

ing data (six papers), population and community
ecology and ecosystems (six papers), global
change and ecosystem sensitivity (six papers),
fishery research in freshwater and marine ecosys-
tems (four papers), evolutionary ecology and
epidemiology (three papers), population genetics
(two papers) and seven remaining papers which
rather concerned the methodological aspects, i.e.
improvement of ANN models in ecological
modelling. Some of these papers have been se-
lected for publication in this special issue. The
aim of this special issue, as well as of this first
workshop, was both to contribute to an im-
provement of methodology in ecological mod-
elling and to stimulate the integration of ANNs
in ecological studies.

Most of the papers propose the use of a
backpropagation algorithm in ANN models.
Certain papers suggest improvement by includ-
ing the Bayesian (see Vila et al.” paper) or radial
base functions (see Morlini’s paper). Only a few
papers used unsupervised learning to model re-
mote sensing data, microsatellite data, or marine
ecology data (see Foody’s paper).
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5. Future developments of ANNs in ecological
modelling

In 1992, during the first international confer-
ence on mathematical modelling in limnology
(Innsbruck, Austria), Jorgensen (1995) presented
a review on ecological modelling in limnology. He
noted the rapid growth of ecological modelling
and proposed a chronological development in
four generations of models. The first models cov-
ered the oxygen balance in streams and the prey-
predator relationships (the Lotka-Volterra model)
in the early 1920s. The second phase of modelling
(in the 1950s and 1960s) was particularly con-
cerned with population dynamics. The third gen-
eration started from the 70’s with more
complicated models and rapidly became tools in
environment management, e.g. eutrophication
models. In the fourth generation, more recent
models are becoming increasingly able to take the
complexity, adaptability and flexibility of ecosys-
tems into account.

As the modelling techniques available in the
fourth generation of ecological models, re-
searchers have a lot of methods ranging from
numerical, mathematical and statistical methods
to techniques based on artificial intelligence, par-
ticularly ANNs. During the last 2 decades of the
current century, the growing development of com-
puter-aided analysis, easily accessible to all re-
searchers has facilitated the applications of ANNs
in ecological modelling.

To use ANN programmes, ecologists can ob-
tain freeware or shareware using different web
sites in the World. Users interested could find
these programmes by filling in ‘neural network’ as
a keyword in the search procedure of the web
explorer. Thus, they can obtain many computer
ANN programmes functioning with all operating
systems (Windows, Apple, Unix stations, etc.).
Moreover, increasingly specialized ANN packages
are proposed at acceptable prices for personal
computers and most professional statistical soft-
ware now proposes ANN procedures included
(e.g. SAS, Splus, Matlab, etc.).

The development of computers and ANN soft-
ware must allow ecologists to apply ANN meth-
ods more easily to resolve the complexity of

relationships between variables in ecological data.
A lot of reports, and especially the papers pre-
sented in this first workshop on the applications
of ANNS in ecology, demonstrate the importance
of these methods in ecological modelling. The
second workshop on this subject is programmed
for November 2000 in Adelaide University (Aus-
tralia), and is being organized by F. Recknagel
(Email: frecknag@waite.adelaide.edu.au) and S.
Lek (Email: lek@cict.fr). You are cordially invited
to participate in this meeting.
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