
Ecological Modelling 120 (1999) 325–335

Predicting fish yield of African lakes using neural networks
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Abstract

Artificial neural network (ANN) approaches to modelling and prediction of fish yield as related to the environmen-
tal characteristics were developed from the combination of six variables: catchment area over maximum area, fishing
effort, conductivity, depth, altitude and latitude. For a total of 59 lakes studied, the correlation coefficients obtained
between the estimated and observed values of abundance were significantly high with the neural network procedure
(r adjusted=0.95, PB0.01). The predictive power of the ANN models was determined by the leave one out
cross-validation procedures. This is an appropriate testing method when the data set is quite small and/or when each
sample is likely to have ‘unique information’ that is relevant to the model. Fish yields estimated with this method were
significantly related to the observed fish yields with the correlation coefficient reaching 0.83 (PB0.01). Our study
shows the advantages of the backpropagation procedure of the neural network in stochastic approaches to fisheries
ecology. Using the specific algorithm, we can identify the factor influencing the fish yield and the mode of action of
each factor. The limitations of the neural network approaches as well as statistical and ecological perspectives are
discussed. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding and predicting biological pro-
ductivity is considered a key question by lake
fisheries scientists. Several ecologists and fisheries
managers have tried to determine the abundance
of living stocks or the specific biodiversity in
aquatic ecosystems using some of their character-

istics, i.e. surface of the river drainage basin,
surface area of lakes, flood plain areas, morpho-
edaphic index, depth, coastal lines, primary pro-
duction, etc. (Henderson and Welcomme, 1974;
Ryder et al., 1974; Melack, 1976; Crul, 1992; Laë,
1992). In developing countries, the economical
importance of fish and as a food source makes
this topic particularly relevant.

Diverse multivariate techniques have been used
to investigate how the various richness of fish is
related to the environment, including several
methods of ordination and canonical analysis,
and univariate and multivariate linear, curvilin-
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ear, and logistic regressions (Rawson, 1952; Han-
son and Legget, 1982; Ryder, 1982; Schlesinger
and Regier, 1982; Youngs and Heimbuch, 1982;
Bernacsek and Lopes, 1984; Marshall, 1984; Wel-
comme, 1985, 1986; Payne and Harvey, 1989; De
Silva et al., 1991; Moreau and De Silva, 1991;
Payne et al., 1993). Complete and critical statisti-
cal methods reviewed by James and McCulloch
(1990) assume that relationships are smooth, con-
tinuous, and either linear or involving simple
polynomials. However, for quantitative analysis
and more particularly for the development of
predictive models of fish abundance, multiple lin-
ear regression and discriminate analysis have re-
mained, the most frequently used techniques
(Fausch et al., 1988; Jowett, 1993). These conven-
tional techniques (based notably on multiple re-
gression) are capable of solving many problems,
but show sometimes serious shortcomings. This
difficulty is that relationships between variables in
sciences of the environment are often non-linear
whereas methods are based on linear principles.
Non-linear transformations of variables (logarith-
mic, power or exponential functions) allow to
significantly improve results, even if it is still
insufficient. However, the neural network, with
the error backpropagation procedure, is at the
origin of an interesting methodology which could
be used in the same field as regression analysis
particularly with the non-linear relations (Rumel-
hart et al., 1986). Nevertheless, few applications
of this new technology in ecological sciences were
published in contrast with the physical or chemi-
cal sciences (Smits et al., 1992; Lerner et al., 1994;
Albiol et al., 1995; Faraggi and Simon, 1995).

Artificial neural networks (ANN) may be ap-
plied to different kinds of problems, e.g. pattern
classification, interpretation, generalization or cal-
ibration. In this paper, neural networks have been
used for multiple regression problems. The aim of
this study was to analyze the level of relationships
between some physical environmental parameters
and the fish yield on African lakes, and also to
propose the basis of the development of predictive
tools using neural network methodology. We pro-
pose in order that, to analyze the level of relation-
ships existing between some continuous physical
environment variables and the fish yield.

2. Material and methods

2.1. Study sites and data

The 59 studied lakes are distributed all over
Africa and Madagascar (Fig. 1). Currently avail-
able data on these lakes are insufficient. Most of
them are old and/or just deal with survey periods
sometimes less than 1 year. They came mainly
from ‘the source book for the inland fishery re-
sources of Africa’ (Burgis and Symoens, 1987;
Bayley, 1988; Vanden Bossche and Bernacsek,
1990a,b, 1991; Crul, 1992; van der Knaap, 1994;
Crul and Roest, 1995; Laë and Weigel, 1995a,b;
Laë, 1997).

All data listed in the above quoted books have
been used. When there were several annual sur-
veys on one lake, we gave preference to the most
recent data that had been controlled and updated.
The choice of lakes focused on ecosystems the
surface area of which was more than 10 km2 in
order to exclude too small or shallow water bod-
ies that present specific modes of functioning and
scanty data on fishing effort and catches.

For the 59 selected lakes, the characteristics
were expressed in terms of latitude, altitude, mor-
phometric parameters including catchment area/
area ratio and average depth, physical and
chemical parameters as conductivity. The produc-
tivity were expressed as annual fish yield (kg ha−1

year−1) and the fishing effort as number of fisher-
men per km2, that is the only relevant index for
these lakes where fishing tackles and techniques
can vary considerably.

2.2. Statistical analysis of data

Univariate, bivariate and multivariate analysis
of data were performed by the SPSS Software®

release 8 for Windows. The univariate analysis
consisted of the determination of parametric
(mean, standard deviation and coefficient of vari-
ation) and non-parametric (minimum, maximum,
median and quartiles) statistical parameters. In
the bivariate analysis, we studied the correlation
between variables using Pearson’s coefficients
(values and probabilities of significance at 5 and
1% of confidence intervals). In the multivariate
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analysis, the relationships between environmental
characteristics and the fishing yield were studied
with multiple regression analysis. Stepwise multi-
ple linear regression procedures were applied. The
diagnosis of the student residuals (normality and
independence) was used to test the validity of the

Fig. 2. Typical three-layered feedforward artificial neural net-
work. Six input nodes corresponding to six independent envi-
ronmental variables, five hidden layer nodes and one output
node corresponding to the estimate of fish yield. Connections
between nodes are shown by solid lines: they are associated
with synaptic weights that are adjusted during the training
procedure. The bias nodes are also shown, with 1 as their
output value. The sigmoid activation functions are plotted
within the node.

Fig. 1. Location of the 59 studied lakes, distributed in Africa
and Madagascar. 1: Alaotra (Madagascar), 2: Albert (Zaire),
3: Ayame (Ivory coast), 4: Bangweulu (Zambia), 5: Baringo
(Kenya), 6: Cahora Bossa (Mozambique), 7: Chad (Chad), 8:
Chilwa (Malawi/Mozambique), 9: Chisi (Zambia), 10: Chiuta
(Malawi/Mozambique), 11: Edward (Zaire), 12: George
(Uganda), 13: Guiers (Senegal), 14: Ihema (Rwanda), 15: Itasy
(Madagascar), 16: Jebel Aufia (Sudan), 17: Jipe (Kenya), 18:
Kafue Flats/gorge (Zambia), 19: Kainji (Nigeria), 20: Kariba
(Zambia), 21: Kinkony (Madagascar), 22: Kitangiri (Tanza-
nia), 23: Kivu (Zaire), 24: Kossou (Ivory coast), 25: Xyle
(Zimbabwe), 26: Kyoga (Uganda), 27: Lagdo (Cameroon), 28:
Maji Ndombe (Zaire), 29: Malawi (Malawi), 30: Malombe
(Malawi), 31: Manantali (Mali), 32: Mantasoa (Madagascar),
33: Massingir (Mozambique), 34: Mtera (Tanzania), 35:
Mugesera (Rwanda), 36: Mujunju (Tanzania), 37: Mwadin-
gusha (Zaire), 38: Mweru (Zaire), 39: Mweru wa Nt (Zaire),
40: Naivasha (Kenya), 41: Nasho (Rwanda), 42: Nasser
(Egypt), 43: Nyumba Ya Mungu (Tanzania), 44: Nzilo (Zaire),
45: Pool Malebo (Congo/Zaire), 46: Robertson (Zimbabwe),
47: Rugwero (Burundi), 48: Rukwa (Tanzania), 49: Sake
(Sake), 50: Selingue (Mali), 51: Sennar (Sudan), 52: Tana
(Ethiopia), 53: Tanganyika (Zaire/Burundi), 54: Tumba
(Zaire), 55: Turkana (Kenya), 56: Upemba (Zaire), 57: Victo-
ria (Kenya), 58: Volta (Ghana), 59: Ziway (Ethiopia).

determination coefficient obtained (Weisberg,
1980; Tomassone et al., 1983).

2.3. Artificial neural network (ANN) processing

The multilayer feedforward neural network is
one of the most popular network structures
among all the ANN diagrams. The processing
elements in the network are called neurons (or
nodes or units). All the neurons in a multilayer
feedforward neural network are arranged so that
they have a layered structure. A typical three-
layer feedforward ANN is shown in Fig. 2. The
first layer connects with the input variables and is
called the input layer. Here, it comprises six neu-
rons (six independent variables). The last layer
connects to the output variables and it is called
the output layer of only one neuron (the depen-
dent variable). Layers in-between the input and
output layers are called hidden layers; there can
be more than one hidden layer. The number of
neurons of the hidden layer is an important
parameter of the network. The empirical ap-
proach for the selection of the network consists of
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a test for the number of different possible configu-
rations and the selection of that which provides
the best compromise between bias and variance
(Geman et al., 1992; Kohavi, 1995), which is the
training that gives a good generalization. In our
study, a network with one hidden layer of five
neurons has been retained (network with two
hidden layers have also been tested, but the results
do not differ significantly).

Each of the neurons is connected to the neu-
rons of neighboring layers. The parameters associ-
ated with each of these connections are called
weights. All connections are fed forward; that is,
they allow information transfer only from an
earlier layer to the next consecutive layers. No
feed-back connections are permitted in these
‘feed-forward’ networks. Neurons within a layer
are not interconnected, and neurons in nonadja-
cent layers are not connected. Considering an
input vector xi= (xi0, xi1, …, xip) for ith record,
with xi0 always equal 1 which corresponds to the
bias. The vector linking the input units to hidden
units can be noted as wh= (wh0, wh1, …, whp). The
incoming signal of the hidden layer for the hth
neuron is the linear projection z=whxi. The effec-
tive incoming signal z, is passed through a non-
linear activation function (called a transfer
function or activation function) to produce the
outgoing signal yh of the hidden neuron, yh=
f(whxi) with f a transfer function yh = f(z)=1/
(1+exp(−z)). In this study, the sigmoid function
is preferred as compared to linear or threshold
type functions. The same operation is repeated for
the output layer, with values for the sigmoid
function derived from the sum of the product of
the outgoing signals from the hidden layer and
the weight binding the hidden layer with the
output layer. The outgoing signal of the output
layer provides the predicted values of the net-
work, i.e. the fish yield in this study.

ANNs are generally trained by the backpropa-
gation algorithm (Rumelhart et al. 1986). The
training is a method that determines values of
network parameters which allow a good estima-
tion of ŷ, values of the outgoing signals from the
y network. The backpropagation algorithm as-
sesses y repeatedly by a method of gradient de-
scent. The training of the network starts with

weights stemming from a random selection be-
tween −0.3 and 0.3. Adjustment of these weights
is made according to the importance of the error
(y− ŷ). Several repetitions of data are necessary
to guarantee the convergence of estimated values
(weak error as compared to observed values),
without obtaining an overfit. The number of itera-
tions was limited to 500. The compact form of
feedforward ANN made the programming of the
algorithm much easier, especially when using
some matrix based software packages, e.g. Mat-
lab® for Windows®.

In order to compare the results obtained with
multiple linear regression and with neural net-
work, an application was made on the whole
database (59 units). Then, to justify the predictive
quality of the ANN models, a leave one out
procedure (Efron 1983; Jain et al. 1987) was used.
The principle of this validation was to assess the
assignment of each of the 59 individuals, the
learning phase being performed with the other 58.
It concerned in fact a cross-validation with the
number of records reserved for the test limited to
a unit at each time. This procedure is useful in
cases where one has a weak quantity of
observations.

2.4. Sensiti6ity of input 6ariables

A disadvantage of ANN in comparison with
MLR models is their lack of explanations regard-
ing the relative importance of each independent
variable considered. MLR analysis can identify
the contribution of each individual input in deter-
mining the output and also can give some mea-
sures of confidence about the estimated
coefficients. In addition, there is currently no the-
oretical or practical way of accurately interpreting
the weights in ANN (Smith, 1994). For example,
weights cannot be interpreted as a regression co-
efficient nor can difficulty be used to compute
causal impacts or elasticity. Therefore, ANN are
generally better suited for forecasting or predict-
ing rather than for policy analysis. In ecology,
however, it is necessary to know the impacts of
each explanatory variable. Some authors have
proposed methods which allow the determination
of the impact of variables initially applied to the
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Table 1
Statistical parameters of the variables studieda

Q1 Median Q3 MaxMin Mean SD CV

9.1 43.8 170Catchment area/area ratio 68130.97 337.2 983.2 292
0.5 1.4Fishing effort 2.90.1 28.6 2.7 4.1 155

80 165 379 33001 358Conductivity 588 164
3.0 5.0 15.7 570.0Depth 29.30.3 94.9 324

300 663 1160 18901 727Altitude 492 68
2 8 14Latitude 240 8.5 6.2 73

22.4 52.1 77.3 252.91.2 59.1Fish yield 51.8 88

a Q1, Q3, first and third quartile; SD, standard deviation; CV, coefficient of variation expressed as a percentage.

model (Dimopoulos et al. 1995; Garson 1991;
Goh 1995; Lek et al. 1996a,b). In this work, an
experimental approach has been used to deter-
mine the response of the model to each of the
input variables separately by applying a typical
range of variation of a single ‘free’ variable to
the model, while the other (‘blocked’ variables)
are held constant. The contribution of each en-
vironmental variable to fishing yield estimation
was calculated using 12 values evenly spaced
over the range between the minimum and the
maximum that appeared in the set of data. The
remaining ‘blocked’ variables were provisionally
set at an arbitrary level. Because this level influ-
enced the results, we set the remaining variables
simultaneously together at their minimum value,
first quartile, median, third quartile and maxi-
mum successively. Five responses were thus ob-
tained for each of the 12 ‘free’ variable values.
They were further reduced to their median
value. The operation was repeated for all of the
environmental variables.

3. Results

3.1. Statistical parameters of 6ariables

Table 1 shows a very large variability within
the data. The coefficients of variation are high
ranging from 100 to 200% for fishing effort and
conductivity, 292% for the catchment area/area
ratio, and 324% for mean depth. Among ex-
planatory variables, the only ones that have co-
efficients of variation smaller than 100% are

latitude and altitude and even these variables
reach values of around 70%. These results
confirm the heterogeneity and the diversity of
the studied lakes.

The dependent variable (i.e. yield) varies from
1.2 to 253 kg ha−1 year−1, with an average of
59 kg ha−1 year−1. Such yields depend both on
biotic capacities of the different ecosystems stud-
ied and fishing pressure. Low fishing effort
mainly explains a low yield since the variable
studied only gives information on the level of
catches and not at all on the actual abundance
of fish. The coefficient of variation (88%) confi-
rms a large variability in yield. Fig. 3 shows
that very high values of yield are rare, which is
a very usual result in ecology (Verner et al.
1986).

Fig. 3. Descriptive statistics of the variable Fish Yield: Box-
plot representation. A circle designates an outlier values (val-
ues more than 1.5 box-lengths from 75th percentile), and an
asterisk indicates extreme values (values more than three box-
lengths from 75th percentile).
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Table 2
Pearson correlation matrix between studied variable with two-tail significance of probabilitya

Fishing effort Conductivity Depth AltitudeCatchment area/area Latitude Fish yield

Ns NsCatchment area/ Ns Ns Ns Ns
area

Ns Ns Ns NsFishing Effort **0.183
−0.140 Ns−0.139 NsConductivity Ns Ns

−0.085Depth −0.132 0.098 Ns Ns Ns
−0.245Altitude 0.007 0.068 0.013 Ns Ns

0.111 −0.208 −0.030−0.098 −0.107Latitude Ns
0.043Fish yield 0.569 −0.102 −0.212 −0.112 −0.037

a Ns, not significant, P\0.05.
** Highly significant, PB0.001.

3.2. Relationship between fish yield and
en6ironmental 6ariables

Fish yield was significantly related to only one
variable (Table 2): Fishing Effort (r=0.57; PB
0.01). With other variables, the correlation coeffi-
cient is weak, negative values with conductivity,
depth, altitude, latitude (�r �B0.21; P\0.05) and
positive only with the catchment area/area ratio
(r=0.04; P\0.05). The relationship between
yield and fishing effort explains only a low per-
centage of variance (32%). Among independent
variables, the correlation was not significant for
all of variables (P\0.05).

3.3. Multiple regression analysis

The comparison between MLR predictive
power and ANN is not quite fair, unless the
number of parameters (coefficients) of the MLR
model is almost the same as ANN. A MLR was
performed in order to check if a significant corre-
lation could be obtained with this classical linear
method. For the 59 samples, the stepwise proce-
dure performed with SPSS selected only one vari-
able at one step: Effort (r=0.57, F1,57=27.33,
PB0.001). With all of the six environmental vari-
ables, we obtained a correlation coefficient of only
0.62 (F6,52=5.45, PB0.001). Low correlation co-
efficient testify the low percentages of explained
variance (32% in stepwise regression). The supple-
mentary variable addition as compared to the
stepwise regression contributes only very little to

the improvement of results (38% of explained
variance).

In order to completely full file the requirement
of MLR method (i.e. a normal distribution of
variables considered) the fish yield and the six
independent variables were transformed to their
log10. The result of MLR show a correlation
coefficient of 0.81, i.e. higher than before log
transformation.

3.4. Neural network

In a first step, we developed a model with the
59 available lakes. In order to avoid possible
overfitting, several tests were carried out with
different configurations of the neural network
(change in the number of neurons of the hidden
layer). The configuration that had a minimal di-
mension and which gave satisfying results was
retained. In this study, the number of neurons in
the hidden layer of the network was fixed at five.
To avoid again overfitting, the number of itera-
tions was limited to 500, which is quite low in
neural network modelling. The resulting correla-
tion coefficient was 0.95 for the regression be-
tween observed and estimated values (Fig. 4),
indicating that the ANN provided satisfactory
results over the whole set of values for the depen-
dent variable. The points are well aligned on the
diagonal of the perfect fit line (co-ordinate 1:1).
The linear adjustment between observed and esti-
mated values gives a slope practically equal 1
(y=0.8981x+4.82). Although weakly repre-
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sented, the strong values of the output variable
are aligned around this same perfect fit line, with
a few outliers (Fig. 4a). Some weak values were
slightly overestimated.

Residuals have an average of 1.2 and a stan-
dard deviation of 16 with the minimum value of
−55.7, and the maximum 39. In order to test the
normality of model residuals, the statistical test of
Lilliefors (1967) was applied. With 59 observa-
tions, the limit values of the test for the rejection
of the hypothesis of normality were 0.115 for
a=0.05 and 0.134 for a=0.01. Lilliefors test of
normality gave a maximum difference of 0.099,
P=0.15. The study of the relationship between
residuals and values estimated by the model
showed complete independence (Fig. 4b). The co-
efficient of determination was negligible (r2=
0.0004) and the slope of correlation between
estimated values and residuals close to 0 (y=
0.0067x+0.8171); the residuals were well dis-
tributed on either side of the horizontal line
(ordinate) representing the residual mean.

3.5. Neural network sensiti6ity

The influence of the six independent environ-
mental variables on the fish yield in the ANN
modelling is illustrated by six curves (Fig. 5):
� Catchment area/area ratio (Fig. 5a): The rela-

tionship between yields and catchment area/
area ratio is monotonously growing. It appears
that smaller lakes situated in larger catchment
areas are more productive.

� Number of fishermen (Fig. 5b): There is an
increase of fishing yield in relationship with
fishing effort. First, fish yield increases rapidly
with the fishing Effort. After that, it stabilizes
over level of 200 kg ha−1 year−1 from 15
fishermen km−2 characterized by a practically
horizontal line.

� Conductivity (Fig. 5c): there is an increase
contribution: the fish yield increases rapidly
when the value of the independent variable
increases. Beyond 2000 ms cm−1, it stabilizes for
Conductivity. This profile is similar to the one
of previous case with a lower amplitude.

� Depth (Fig. 5d): There is a linear decrease
between fish yield and depth from 230 kg ha−1

year−1 for very shallow lakes to 50 kg ha−1

year−1 for deeper ones (500 m). The profile is
represented practically by a line of almost con-
stant slope.

� Altitude (Fig. 5e): Fish yield versus altitude
displays a skewed-to-the-right profile. The max-
imum of contribution is situated at around 500
m of altitude, and decreases at higher altitudes.
Altitude interacts weakly with fish yield despite
the temperature differences which can reach
11°C between sea level and the highest lake.

� Latitude (Fig. 5f): Variations of fish yield with
latitude are linearly growing. When the latitude
increases from equator to 25° north or south,
the increase in fish yield is only about 100 kg
ha−1 year−1.

3.6. Testing of the network

The predictive power of the ANN models was
determined by the leave one out procedures.
Leave-one-out cross-validation is appropriate
when the data set is quite small and/or when each

Fig. 4. Results of fitting the model with 59 observations and a
6-5-1 network. (a) Scatter plot of estimated values vs. pre-
dicted values. The solid line indicates the perfect fit line. (b)
Relationship between residuals and estimated values.
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Fig. 5. Sensitivity profiles (or ‘responses’) of the predicted value of fish yield to each of the six independent variables. Each
independent variable is tested versus the five other variables placed at one of five standard levels (minimum, 1st quartile, median,
3rd quartile, maximum).

sample is likely to have ‘unique information’ that
is relevant to the regression model. For the leave
one out procedure, the predictive performance
was shown in Fig. 6a. By testing one record at
each time on a model established from 58 remain-
ing records, very good results were observed: the
correlation coefficient was 0.831. This coefficient
does not reflect entirely the result. The graph of
correlation between observed and predicted values
showed the majority of records were aligned on
the diagonal of co-ordinate 1:1, despite the slope
significantly different to 1 (y=0.6389x+22.249).
Some overestimates of some weak values were
possibly observed. The three high values were
slightly underestimated. This was the consequence

of the scarcity of high values in the database for
an effective learning of the model.

Residuals have an average of −0.9 and a stan-
dard deviation of 29 with the minimum value of
−92, and the maximum 100. Lilliefors test of
normality gave a maximum difference of 0.337,
PB0.001. The study of the relationship between
residuals and values estimated by the model
showed complete independence (Fig. 6b). The co-
efficient of determination was negligible (r2=
0.01) with the slope of correlation coefficient
between predicted values and residuals close to 0
(y=0.0806x−5.7405); the residuals were well
distributed on either side of the horizontal line
(ordinate) representing the residual mean.
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4. Discussion and conclusion

Yield fish studied here have been reliably fitted
to the easily measured environmental characteris-
tics. Thus, variations in fish yield are strongly
connected to a set of six environmental variables.

The theoretical advantage of conventional
MLR models over ANN is that their parameters
provide information about the relative importance
of the independent variables (although this is not
true when composite variables are used). How-
ever, the same results can be obtained by perform-
ing a sensitivity analysis of the ANN. Garson

(1991), Goh (1995) have proposed the methods
for interpreting neural networks connection
weights to illustrate the explanatory variable im-
portance inside the ANN. These studies demon-
strated the potential of ANN approach for
capturing non-linear interactions between vari-
ables in complex engineering systems and propose
the procedure for partitioning the connection
weights in order to determine the relative impor-
tance of the various input variables. Dimopoulos
et al. (1995) propose the study of the first partial
derivatives of the ANN’s output with respect to
each input is used to identify of the factors influ-
encing the dependent variable and the mode of
action of each factor. In ecology, Lek et al. (1995,
1996a,b) proposed an algorithm allowing the visu-
alization of the profiles of explanatory variables.
Aside from the predictive value of the model, an
attempt was made to detect by a simple simula-
tion method the sensitivity of the different
variables.

The main processes that determine biodiversity
indices can be approximated by linear or simple
non-linear (e.g. logarithmic) functions only to a
limited extent. Therefore, such models are not
able to reproduce the behaviour of real systems
when very low or high values of the variables are
considered (Lek et al. 1996b). In fish ecology,
several models, based on MLR principle were
proposed by several authors (Fausch et al. 1988).
To improve the results, non-linear transforma-
tions of independent or/and dependent variables
were frequently used. However, despite these
transformations of variables, results obtained re-
mained often insufficient. Moreover, ANN with
only one hidden layer can model non-linear sys-
tems in ecology whatever is their complexity
(Goh, 1995; Lek et al., 1996b; Scardi, 1996).
Complex systems obviously need complex net-
works (more units in the hidden layer or more
than one hidden layers), adequate training and a
large data set to be modelled.

Multiple regression analysis and back propaga-
tion of the ANN were both used to develop
stochastic models of fish yield prediction using
habitat features on a macrohabitat scale (Lek et
al. 1996b). This stochastic approach required an
extensive database and care to obtain reliable

Fig. 6. Result of testing the model with 59 observations and a
6-5-1 network by the leave-one-out procedure. (a) Scatter plot
of predicted values vs. observed values. The solid line indicates
the perfect fit line. (b) Relationship between residuals and
predicted values.
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models. The selection of input variables, their
ecological significance and the use of a test data
set to assess the model precision and accuracy are
important elements of this type of approach
(Fausch et al. 1988). The advantage of ANN over
MLR models is the ability of ANN to directly
take into account any non-linear relationships
between the dependent variables and each inde-
pendent variable. Several authors have shown
greater performances of ANN as compared to the
MLR (Ehrman et al. 1996; Lek et al. 1996b;
Scardi 1996). The backpropagation procedure of
the ANN gave very high correlation coefficients
comparing to the more traditional models, espe-
cially for the training calculation. In the test set,
correlation coefficients were lower than in training
but still remained clearly significant. This differ-
ence between training and testing sets is more
amplified when the data set is small, and when
each sample is likely to have ‘unique information’;
this is relevant to the model.

Through the present example taken in fish
yield, we show that ANN models are viable when
compared to traditional statistical methodologies.
The ANN has demonstrated here a promising
potential in ecology, as a tool to evaluate, under-
stand, predict and manage African open fisheries.
In any lakes, not already included in our data-
base, the yield will be computed by introducing
the six independent variables for these lakes in the
model.

References

Albiol, J., Campmajo, C., Casas, C., Poch, M., 1995. Biomass
estimation in plant cell cultures: a neural network ap-
proach. Biotechnol. Prog. 11, 88–92.

Bayley, P.B., 1988. Accounting for effort when comparing
tropical fisheries in lakes, river–floodplains, and lagoons.
Limnol. Oceanogr. 33, 963–972.

Bernacsek, G.M., Lopes, S., 1984. Mozambique. Investiga-
tions into the fisheries and limnology of Cahora Bassa
Reservoir seven years after dam closure. FAO Mozam-
bique, GCP-006-SWE, Field Document. 9, Rome, p. 145.

Burgis, M.J., Symoens, J.J., 1987. African wetlands and shal-
low water bodies. Travaux et Documents 211, ORSTOM
Paris, p. 651.

Crul, R.C.M., 1992. Models for estimating potential fish yields
of African inland waters. FAO, CIFA Occasional Paper
16, p. 22.

Crul, R.C.M., Roest, F.C., 1995. Current status of fisheries
and fish stocks of the four largest African reservoirs Kainji,
Kariba, Nasser/Nubia and Volta. FAO, CIFA Technical
Paper 30, p. 134.

De Silva, S.S., Moreau, J., Amarasinghe, U.S., Chookajorn,
T., Guerrero, R.D., 1991. A comparative assessment of the
fisheries in lacustrine inland waters in three Asian countries
based on catch and effort data. Fish. Res. 11, 177–189.

Dimopoulos, Y., Bourret, P., Lek, S., 1995. Use of some
sensitivity criteria for choosing networks with good gener-
alization ability. Neural Process. Lett. 2 (6), 1–4.

Efron, B., 1983. Estimating the error rate of a prediction rule:
improvement on cross-validation. J. Am. Stat. Assoc. 78,
316–330.

Ehrman, J.M., Clair, T.A., Bouchard, A., 1996. Using neural
networks to predict pH changes in acidified Eastern Cana-
dian lakes. Artif. Intell. Appl. 10, 1–8.

Faraggi, D., Simon, R., 1995. A neural network model for
survival data. Stat. Med. 14, 73–82.

Fausch, K.D., Hawkes, C.L., Parsons, M.G., 1988. Models
that predict the standing crop of stream fish from habitat
variables. U.S. Forest Service General Technical Report
PNW-GTR, p. 213.

Garson, G.D., 1991. Interpreting neural-network connection
weights. Artif. Intell. Expert 6, 47–51.

Geman, S., Bienenstock, E., Doursat, R., 1992. Neural net-
works and the bias/variance dilemma. Neural Comput. 4,
1–58.

Goh, A.T.C., 1995. Back-propagation neural networks for
modelling complex systems. Artif. Intell. Eng. 9, 143–151.

Hanson, J.M., Legget, W.C., 1982. Empirical prediction of fish
biomass and yield. Can. J. Fish. Aquat. Sci. 39, 257–263.

Henderson, H.F., Welcomme, R.L., 1974. The relationship of
yield to morpho-edaphic index and numbers of fishermen
in African inland fisheries. FAO, CIFA Occasional Paper
1, p. 19.

Jain, A.K., Dube, R.C., Chen, C., 1987. Bootstrap techniques
for error estimation. IEEE Trans. Patt. Anal. Mach. Intell.
PAMI 9, 628–633.

James, F.C., McCulloch, C.E., 1990. Multivariate analysis in
ecology and systematics: panacea or Pandora’s box? Ann.
Rev. Ecol. Syst. 21, 129–166.

Jowett, 1993. A method for objectively identifying pool, run,
and riffle habitats from physical measurements. N.Z.. J.
Mar. Freshw. Res. 27, 241–248.

Kohavi, R., 1995. A study of cross-validation and bootstrap
for estimation and model selection. Proceeding of the 14th
International Joint Conference on Artificial Intelligence,
Morgan Kaufmann Publishers, pp. 1137–1143.
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