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Abstract

The aim of the present work is to propose a model for the estimation of lead concentration in grasses using urban
descriptors easily accessible and to study the specific effect of each descriptor on lead concentration. Six descriptors
were considered: the density of vegetation, the vegetation height, wind velocity, height of building, distance of
adjacent street, traffic volume. Lead concentrations were determined in one grass species, Cynodon dactylon (L.) Pers,
(Bermuda grass), collected from 30 different locations in Athens city. The proposed model is a multilayer perceptron
(MLP) trained by backpropagation. The predictive quality of the model was judged by two cross-validation methods.
The generalization ability of the model is confirmed by a determination coefficient higher than 0.91. The study of the
first partial derivatives of the output of the MLP with respect to each input is used to identify of the factors
influencing the lead concentration and the mode of action of each factor. Results allow to classify the environmental
descriptors by their decreasing influence on lead concentration: distance of adjacent street, traffic volume, density of
vegetation, wind velocity, height of building and vegetation height. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the city of Athens the constant increase of
the population over the last decades has resulted

in high traffic volumes and consequently high
automobile emissions. Compounded by the nar-
rowness of the roads this has caused discomfort
(due to environmental conditions) to the city resi-
dents. Consequently, the air, plants and the soil
are contaminated by various contaminants such
as lead (Pb) (Ndiokwere, 1984; Ho and Tai, 1988;
Mielke, 1991; Francek, 1992).
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In a city environment the main sources of Pb
pollution are car exhausts, fumes and tyre wear, if
there are no smelting sites, heavy industry or
other sources of Pb contamination nearby
(Akhter and Madany, 1993). In addition to the
automobile emissions, the high density of large
buildings amplifies pollution of plants because
dispersion of the pollutants over wider areas is
prevented (Capannesi et al., 1988).

Regarding the dispersion of pollutants in parks,
studies suggest that the pollution burden is greater
in the peripheral than in the central zones of the
open areas (Shao-Lian et al., 1989; Grodzinska et
al., 1990). In a previous study, the authors
(Chronopoulos et al., 1997) examined the impact
of traffic conditions on the vegetation and soil of
two major parks in Athens and concluded that
the density and composition of the peripheral
vegetation has a remarkable effect on the disper-
sion of Pb and Cd towards the inner sites of the
parks.

The concentration of pollutants in the different
parts of the plants is strongly dependent on the
plant species. Plant species as well as the design
patterns of parks can also affect the distribution
of Pb concentration in plants. A limited number
of plant species that tolerate and colonize envi-
ronments polluted with heavy metals are selected
and used in the composition of city parks and
avenue median dividers. Several plant species
were studied to evaluate Pb contamination in city
environments. Cynodon dactylon (L.) Pers. is one
of the most frequently studied plant species for
this purpose (Ho and Tai, 1988; Sukkop, 1990).

In order to establish realistic simulation models
of Pb deposition and accumulation by plant spe-
cies several inter-dependent models of environ-
mental processes have to be linked together.
Direct measurements of deposition rates using
micrometeorological methods have advanced the
knowledge of deposition processes. However, rou-
tine implementation of these methods for moni-
toring deposition rates is difficult and pollutant
dispersion models for urban and industrial re-
gions are only just beginning to be developed.

The purpose of our study is the evaluation of
Pb levels in vegetation in an urban environment,
using environmental parameters that are easily

accessible and that strongly influence the diffusion
of the pollutants which are mainly the result of
high traffic (Preer, 1977; Wong, 1996). At the
present study, we use and compare the predictive
capacity of two statistical methods: Multiple Lin-
ear Regression (MLR) and Neural Networks
(NN). Model-predicted and observed values are
compared by different statistical parameters. For
the NN model we propose a new simple method
to study the relationship between the Pb concen-
trations estimated by the model and each influenc-
ing variable.

2. Materials and methods

2.1. Study area and en6ironmental descriptors

The city centre of Athens is characterized by
the presence of high densities of tall buildings and
very infrequent sites covered by vegetation, such
as parks. National Garden and Areos Park are
the two major parks in the city centre they occupy
relatively large areas of 15.8 and 24.0 hectares,
respectively. These two parks are surrounded by
avenues and streets, with different traffic volumes
and an orientation that inhibits air circulation and
dispersion of pollutants.

Squares of considerable size, covered with vege-
tation and able to provide comfortable environ-
mental conditions for the citizens, are almost
absent from the city of Athens. The great major-
ity of city squares (approximately 92%) are less
than 1.0 ha in size.

Samples were collected during the summer of
1995, from the plant species Cynodon dactylon, at
30 different locations (three public squares 1.0 ha
in size, three public squares 5.0 ha in size, three
public squares 10 ha in size, two parks and 14
traffic islands, Fig. 1). At each site three samples
of Cynodon were bulked together to give a com-
posite sample of about 5 g. A total of 140 plant
samples were studied. Cynodon dactylon was se-
lected for monitoring Pb contamination since it
was found at all studied parks, squares and traffic
islands. All plant samples were oven-dried at 70–
80°C and ground to a fine powder by a micro-
hammer mill to pass through a 1 mm mesh screen.
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From each powder sample three subsamples of 1
g were weighed and metals were extracted by
digestion with a 2:1 HClO4/HNO3 solution. Then
the samples were filtered and diluted with
deionised water to the final volume for Pb deter-
mination. Lead concentration was determined in
the extracted solutions by atomic absorption spec-
trometry (GBC 908 FBT). The detection limit was
100 ppb for Pb with an accuracy of 1% RSD.

Every sample was described by a set of perma-
nent descriptors (discrete and continuous).
� DENS: mean density of vegetation between the

sample point and the nearest adjacent street
(the values of DENS varied over the range
0–90%).

� GRAD: mean vegetation height between the
sample point and the nearest adjacent street
(the value of GRAD varied over the range 0–2
m).

� AIR: Wind velocity recordings were carried out
with a digital measurement device at a network
of 140 selected points. The measurement points

were located at the plant sampling sites. The
measurements were made at a height of 2.0 m
above ground using a cap anemometer. A total
of 38 measurement trips were conducted. After
processing the data obtained, the average wind
velocity was determined for the selected points.
The reduction of the wind velocity for each
measurement point compared with the maxi-
mum mean wind velocity was determined.
Then a variable, AIR, was introduced to take
into account the reduction of the wind velocity
and the degree of ventilation at the measure-
ment points. When reduction did not exceed
20%, ventilation was considered good (AIR=
3). At the points where the reduction varied
between 20 and 40% ventilation was considered
moderate (AIR=2) and whenever the reduc-
tion exceeded 40% ventilation was considered
poor (AIR=1).

� BUILD: mean height of the adjacent buildings
(the value of BUILD varied over the range 2–8
floors).

� DIST: distance between the sample point and
the nearest adjacent street (the value of DIST
varied from 0–66 m)

� TRAF: Traffic volume as expressed from the
number of traffic lanes (the value of TRAF
varied from 2–8 lines).

2.2. Modelling techniques

The techniques of multiple linear regression and
stepwise multiple linear regression (Weisberg,
1980; Tomassone et al., 1983) were used. Calcula-
tions were done using SPSS software.

Multilayer Perceptrons (MLP), the most com-
monly used artificial neural networks, are general
purpose, flexible, nonlinear models, f:Rn�Rm, of
the general form:

f(x)=fn [Wnfn−1[Wn−1fn−2[…f1[W1x ]]] (1)
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, j=1,…,m (2)Fig. 1. Locations of measurement points in Athens city centre.
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where Wi stands for the parameter matrix or
weight matrix and fi stands for diagonal nonlin-
ear operators; the elements of which are the so-
called activation functions. MLP’s with a
nonlinear activation function are genuinely non-
linear and it has been proved (Cybenko, 1989)
that, under some weak assumptions, any function
can be approximated with an arbitrary accuracy
by an MLP. Estimation of W is called training,
learning or adaptation of the weights and regres-
sion via MLP is called supervised learning. The
backpropagation algorithm is the most frequently
used for training (Rumelhart et al., 1986).

A major problem in the use of MLP for model
building is the determination of the optimal archi-
tecture of the network (number L of layers and Jj,
j=1…L, where Jj is the number of node for layer
j ). Usually, the trial-and-error method is applied
to test various alternative model architectures and
choose the one with the optimal generalisation
capability. Generalisation is defined by the ability
of a model to predict data other than those on
which it has been trained. A model with too many
free parameters will fit the training data arbitrar-
ily closely, but will not necessarily lead to optimal
generalisation (overfitting).

Two classes of generalisation criteria are usu-
ally used for model architecture selection and
model testing. The first class contains criteria
based on the fitting errors (e.g. Akaike informa-
tion criterion, Akaike, 1974). The second class of
criteria is based on the principle of cross-valida-
tion (CV), according to which, the decisions on
the model structure and predictive capacity are
made on samples of data different than the sam-
ple used to estimate the parameters of the model.
Usually overfitting is controlled by using a subset
of the data, the validation set. This subset is not
used for the computation of the weight matrix but
for stopping the training process and taking deci-
sions on the architecture parameters. The general-
ization ability is estimated by using another subset
of the data, the test set, which neither participated
in the weight estimation, nor in the architecture
optimization, but only for the ultimate evaluation
of the model. Separation of the data into the
subsets is not straight-forward. Several questions
arise concerning this method, they are discussed
in Weigend et al. (1992).

One of the most efficient methods is k-fold
cross-validation. The data set is divided into k
approximately equal parts, and each part is used
in turn as the test set for the network trained on
the remainder, and the observed error rates on the
k parts are averaged.

The error of a network, as a function of the
weights that define it, is filled with hills and
valleys. A trivial change in the training data can
change the weights. Even with exactly the same
training set, different random starting weights can
result in dramatically different final results. There-
fore, we do not dare assert that a network trained
with all of the known data is essentially identical
to networks trained with subsets of the data. To
take into account this problem Moody and Utans
(1991) propose a modification of the above cross-
validation method: nonlinear k-fold cross-valida-
tion (NL K– f CV). In this work we use the two
alternative kinds of CV: (1) CV with training,
validation and test data sets and (2) NL K– f CV.

2.3. Preparation of data

The input data had very different orders of
magnitude according to the variables. To stan-
dardize the scales of measurement, the values of
the variables were converted by the relationship:

Zs=
Xo−X(

sx

(3)

with Zs: standardized values, Xo: original values,
X( and sx the mean and standard deviation of the
variable. The dependant variable Pb was also
centred, reduced and converted over the interval
[0…1] because the logistic function used for the
NN output neuron modulates the response to
values between 0 and 1.

2.4. Study of the influencing factors

In multiple linear regression, the influence of
each variable can be roughly assessed by checking
the final values of the regression coefficients. In
mathematical terms, each coefficient of a linear
model is the partial derivative of the response of
the model with respect to the variable of that
coefficient. The MLR partial coefficients therefore
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generally give an indication of environmental real-
ity, although it is not possible for this type of
model to represent a nonlinear relationship such
as that which probably exists between Pb levels
and some influencing factors. On the other hand
the neural network is a ‘black box’ type model
and does not clarify the participation of each of
the explanatory variables (descriptors). In this
study we use a simple method based on the use of
the partial derivatives of the network

response with respect to each descriptor. The link
between the modification of inputs, xj, and the
variation of outputs, yj= f(xj), is the Jacobian
matrix dy/dxt= [qy/qx ]mxn. It represents the sen-
sitivity of the network outputs according to small
input perturbations. For a network with n inputs,
one hidden layer with ni nodes, and one output
(i.e. m=1), the gradient vector of yj with respect
to xj is dj= [dj 1,…,dje,…,djn ]T (Dimopoulos et al.,
1995), with:

dje=sj %
ni

i=1

wisIij(1−Iij)wei (4)

(under the assumption that a logistic sigmoid
function is used for the activation. When sj is the
derivative of the output node with respect to its
input, Iij is the output of the ith hidden node for
the input xj, the scalars wis and wei are the weights
between the output node and the ith hidden node,
and between the eth input node and the ith
hidden node).

The sensitivity of the MLP output for the data
set with respect to input xe is:

SSDe= %
ni

i=1

(dje)2 (5)

and the derivative can be efficiently computed as a
minor extension to the backpropagation al-
gorithm used for training.

3. Results and discussion

3.1. Performance of the models
3.1.1. Multiple linear regression modelling

3.1.1.1. Complete model. With all the eight vari-
ables, the equation of the MLR model and deter-
mination coefficient became:

3.1.1.2. Stepwise model. Only three independent
variables were retained by the model:

Pb= −0.228DENS +0.139 BUILD −0.7 DIST
2.914 −12.650)−4.155(t

0.000 0.004 0.000)(Sig.

R2=0.696 (7)

The study of Fig. 2 shows several problems of
the MLR model (Eq. (7)): an underestimation of
the low values (Fig. 2a), the residuals (differences
between observed and estimated values) tend to
increase with estimated values (Fig. 2b). The
residual distribution is far from normality (Fig.
2c).

3.1.2. Neural network
With the cross-validation approach, a good

predictive model can be obtained using a network
with three neurons in the hidden layer and sig-
moid as activation function. In Table 1, the per-
formance of the MLP model estimated by two CV
methods is shown (MSE=Mean square error).
The high value of the determination coefficient

−0.374DENS +0.156GRAD −0.033AIR +0.097BUILD −0.724DIST +0.092TRAFPb=

−3.728 1.739 −0.617(t 1.646 −12.125 1.247)

0.538 0.102 0.000 0.214)(Sig. 0.000 0.024

R2=0.703 (6)
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Fig. 2. Relationship between observed and estimated values of Pb; (a) MLR and (d). MLP Relationship between the residuals and
the estimated values of Pb; (b) MLR and (e) MLP. Distribution of residuals (observed values-estimated values of Pb); (c) MLR and
(f) MLP.

demonstrates the predictive capacity of the model
(R2 higher than 0.9). The fact that MLP provide
a good predictive model was highlighted by the
independence of the residuals from the variable to
be predicted (Fig. 2e) and their normality (Fig.
2f). The distribution of residuals is better bal-
anced with MLP than with MLR. Values that

exceed the limits of the normal approximation are
rather scarce.

3.2. Influence of factors

The study of MLR model (7) leads to the
conclusion that the most significant factors affect-
ing Pb diffusion are in decreasing order signifi-
cance DIST, DENS and BUILD. Pb
concentration decreased with DIST and DENS
and increased with BUILD. The rest of the fac-
tors are either not very important or they are
correlated to the three more significant factors.

The study of the MLP model, according to the
method presented in Section 2.4, led to the layout
of Fig. 3. Thus, for instance every point of
DDENS versus DENS (Fig. 3a) resulted from Eq.
(4) with j=1,…,140. Eq. (5) allows the variables
to be classified according to their increasing influ-

Table 1
Mean square error (MSE) and determination coefficient R2 for
the NN model estimated by two alternative kinds of CV
method

MSE R2

54.024CV 0.953Training (80)
79.247 0.956Validation (30)

0.938Test (30) 107.779

NL 10–f CV Training 50.37 0.972
0.91188.547Test
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Fig. 3. Partial derivatives of the NN model reponse with respect to each descriptor.

ence on Pb concentration: DIST (SSDDIST=
339.95), TRAF (SSDTRAF=137.83), DENS
(SSDDENS=100.29), AIR(SSDAIR=97.78),
BUILD (SSDBUILD=12.99), GRAD
(SSDGRAD=2.99). The study of Fig. 3 leads to
the following remarks:
� The influence of density (DENS) on the Pb

concentration is rather complicated and non-
linear (Fig. 3a). The negative values of partial
derivatives (DDENS) for the majority of the
values of DENS show that the increase of the
density contributes to the reduction of Pb
concentrations.

� The influence of the height of vegetation on the
reduction of Pb diffusion is shown in Fig. 3b.
The negative values of partial derivatives
(DGRAD) show that the height of vegetation
contributes to the reduction of Pb concentra-
tion. This reduction increases with height.
These results for the contribution of the density

and the height of vegetation are in agreement
with the remarks of Horbert et al. (1988) that
plant density and structure provide an intensive
decline in contamination in the central area of
the parks.

� Concerning the factor AIR, two hypotheses
may be made:
1. ‘Good’ ventilation allows better Pb diffu-

sion, reducing its high concentrations at
points close to the emission source.

2. ‘Poor’ ventilation does not facilitate Pb dif-
fusion to distant points and can thus ex-
plain the reduction of concentrations in the
centre of parks where ventilation is poor.

� The increase of the negative derivatives DAIR
with AIR (Fig. 3c) shows that the first hypoth-
esis is more positive. In a previous study
(Chronopoulos et al., 1997), it has been
pointed out that the dispersion of Pb depends
significantly on the facility of the movement of
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Fig. 4. Pb levels observed and estimated by the MLP model (a) and the MLR model (b) in the different regions of the study area:
R1: three public squares (1.0 ha in size), R2: three public squares (5.0 ha in size), R3: three public squares (10.0 ha in size), R4: Areos
Park (24.0 ha in size), R5: Areos Park-Mavromateon Street, R6: National Garden (24.0 ha in size)-Vas. Sofias Avenue, R7: National
Garden-Irodou Attikou Street, R8: National Garden-Amalias, R9: traffic islands.

air masses, which prohibits or inhibits the dis-
persion of pollutants. The increase of the nega-
tive derivatives DAIR with AIR (Fig. 3c) shows
that the first hypothesis is positive.

� The increase of the number of the floors of the
adjacent buildings supports the increase of Pb
concentrations (Fig. 3d).

� The decrease of Pb concentration with the in-
crease of DIST is evident and nonlinear (Fig. 3e).
The reduction of Pb is very intense near the
emission points and becomes negligible when the
distance is greater than 45 m. The MLR model
without taking into consideration the traffic
factor as expressed by TRAF is unable to
properly estimate the Pb concentrations on
traffic islands (Fig. 4b, R9). The slight reduction
of the estimated values from the MLR model in
that case is due to the fact that the values of the
factor BUILD decrease at those points. The
MLP, taking into account the factor TRAF
gives much better estimations of Pb concentra-
tions.

� The increase of the positive derivatives DTRAF
with TRAF shows that Pb concentrations in-
crease with traffic volume as expressed by the
number of traffic lanes.

4. Conclusions

The basic idea behind the approach proposed
here is the simulation of the system by a statistical
model and the use of the resulting model to
evaluate the contribution of each explanatory
variable to the response of the explained variable.
The comparison between the response of the
model to the environmental variables on the one
hand, and results from field observations on the
other hand, shows similarities and indicates neu-
ral network modelling can be trusted. MLP ad-
justs the result of the estimations to the values
actually measured. The result can be considered
satisfactory since the model built up from a set of
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‘training data’ can predict concentrations for an-
other set of data obtained in the same geographic
area.

The advantage of MLP over MLR models
seems to arise from the ability of MLP to directly
take into account any nonlinear relationships be-
tween the Pb concentrations and each explanatory
factor. The approach proposed here can be ex-
tended to other applications in which non-linear
relationships are observed.
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