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c IUT Périgueux Bordeaux IV, Département Génie biologique, 39 rue Paul Mazy, 24019, Périgueux Cedex, France

Abstract

Artificial Neural Networks (ANN) were applied to microsatellite data (highly variable genetic markers) to separate
genetically differentiated forms of brown trout (Salmo trutta) in south-western France. A classic feed-forward network
with one hidden layer was used. Training was performed using a back-propagation algorithm and reference samples
representing the different genetic types. The hold-out and the leave-one-out procedures were used to test the validity
of the network. They were chosen according to the populations and the questions analysed. The informative content
of the different variables used for the distinction (the alleles of the different loci) was also evaluated using the
Garson–Goh algorithm. The results of learning gave high percentages of well-classified individuals (up to 95% for the
test with the hold-out analysis). This confirms that ANNs are suitable for such genetic analyses of populations. From
a biological point of view, the study enabled evaluation of the genetic composition and differentiation of different
river populations and of the impact of stocking. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Salmonids are extensively studied fishes both
from a practical point of view (fisheries manage-
ment) and for some more theoretical aspects
(ecology and evolution). The brown trout (Salmo
trutta L.) displays some interesting biological
characteristics for the study of genetic intraspe-

cific differentiation: brown trout lives in the upper
part of the rivers and is philopatric. Genetic stud-
ies have shown that the species S. trutta includes
several genetic entities. For example, in the west-
ern part of the French Pyrenees, two wild forms
are present naturally: ancestral Atlantic and mod-
ern Atlantic (the first one was called ancestral
according to Hamilton et al., 1989). Moreover,
stocking practices led to the introduction there
(and more generally in most French rivers) of a
third form, the domestic modern Atlantic trout,
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which does not originate from these rivers (Au-
relle and Berrebi, 1998). The three forms may be
found in the same river and can hybridise.

Nevertheless, the classification of individuals
among the different forms is a prerequisite for the
study of genetic interactions. Allozymes separate
modern and ancestral forms, but no diagnostic
markers are available to distinguish between do-
mestic and wild modern Atlantic trout. However,
microsatellites have shown that the distinction is
justified as the populations of some rivers appear
to be genetically different to hatchery strains (Au-
relle and Berrebi, 1998). Because of microsatellite
properties, distinction between individuals of the
different forms remains difficult. These loci usu-
ally display a high mutation rate and are subject
to retention of ancestral polymorphism and ho-
moplasy phenomena (Jarne and Lagoda, 1996).
There are numerous shared alleles between wild
and domestic modern populations and only some
differences in allelic frequencies. It is, therefore,
necessary to use powerful statistical classification
tools to appraise the genetic composition of the
populations studied and at the same time to sepa-
rate natural migration and human manipulations
(stocking).

Artificial neural networks (ANNs) seem well-
suited to the problem. They have already been
used for a wide range of different studies and
situations. They are commonly used in physics
and chemistry but less so in ecology and popula-
tion genetics. However, preliminary studies have
shown that ANNs are suitable for these topics
(Guégan et al., 1998) and more effective than
classic discriminant analysis Cornuet et al., 1996;
Mastrorillo et al., 1997). Moreover, no particular
assumptions are required concerning the data
used for classification. ANNs have proven to be
effective in population genetics, at several differ-
ent taxonomic levels and with highly variable
markers such as microsatellites (Cornuet et al.,
1996). They are, therefore, expected to be capable
of classifying individuals in populations belonging
to the same sub-species and genetically relatively
similar (e.g. wild and domestic modern trout).
Until now, neural networks have been tested with
some well separated and genetically differentiated
groups (such as bees in Cornuet et al., 1996). In

the work reported here, we applied them to mixed
populations where samples may contain several
genetic units; this raises the question of the refer-
ence samples necessary for training the network
(see Section 2) and that of the validation proce-
dures (how can we know if the result is right?).
Several training and validation procedures were
tested depending on the situation.

Analyses were performed with different pur-
poses. Firstly, we wished to verify using indepen-
dent markers (microsatellites), the distinction
between modern and ancestral fishes which is
shown by allozymes at only one locus (LDH5*);
this also enabled us to test the method in a clear,
well known situation. We then sought wild mod-
ern populations (with no or almost no stocking
influence). This enabled us to evaluate the genetic
composition of the different populations analysed
here. The importance of the different alleles in the
classification (and their informative content) is
also discussed for the different microsatellite loci
used.

2. Materials and methods

2.1. The populations analysed

The populations from nine rivers and three
hatchery strains were analysed. The origins and
sizes of the samples are provided in Table 1. The
numbers refer to Fig. 1, and the percentages of
allele LDH5*90 provide some information about
the genetic composition of the populations. The
ancestral form is characterised by allele 100 at this
locus whereas the two modern forms possess allele
90. A population with 100% LDH5*90 is then
considered as modern, but we do not know
whether these fishes are wild or domestic (there is
no diagnostic allele for this distinction). Some
populations consisting of only a few individuals
were analysed because they were genetically and
morphologically original (Andurentako) or be-
cause they seemed to be mixed (Marcadau which,
according to local managers is heavily stocked;
moreover hatchery fishes are often easy to recog-
nise thanks to coloration) but we kept in mind the
problems of small samples.
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According to allozymic data (unpublished)
some river samples consisted mainly of modern
fishes (Chiroulet, Oussouet and Luz) and certain
other samples were almost completely ancestral
(Dancharia, Andurentako, Béhérékobentako and
Bastan). According to local managers, these pop-
ulations have not been stocked for several years.
Moreover, the morphological characteristics
would tend to show that Chiroulet, Oussouet and
Luz fishes are mainly wild. Marcadau and Béhér-
obie contain both modern and ancestral fishes.

The morphology of Marcadau fishes tend to show
that the population is quite heavily restocked.

2.2. Microsatellite loci

Four microsatellite loci were analysed. Strutta
58 has been cloned by Poteaux (1995). MST 73
and MST 15 have been cloned by Estoup (Estoup
et al., 1993). MSU 4 has been published in Gen-
bank under accession number U43694; it was
submitted directly by P.T. O’Reilly and has been

Table 1
Origin and characteristics of the samples; bold names refer to the samples names used in the text

% LDH5*90BasinRiverLocalityNo. (map) Sample size

hatchery 50La Canourgue 95
hatchery 30Brassac 100

9936hatcherySuech
Cauterets1 Marcadau Adour 15 33

2 024NivelleBeherekobentakoSare
30Nivelle 2NivelleDancharia3

Andurentako Untxin 54 0Herboure
Bidarray Bastan5 Adour 29 4

6 Béhérobie Nive de Béhérobie Adour 25 27
Chiroulet Adour7 Adour de Lesponne 8986

Oussouet AdourBagnères de Bigorre8 86 82
88AdourLuzArgeles 959

Fig. 1. Location of the sampling points.
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Fig. 2. Structure of an Artificial Neural Network (ANN).

Each neurone is connected with the neurones of
the neighbouring layers; it receives and sends sig-
nals through these connections and always from
input to output (Fig. 2). Each connection is
weighted according to the signal intensity. Each
neurone integrates the signals received from the
former neurones and sends a new signal to the
next ones. This signal is delivered according to a
non-linear transfer function applied to the sum of
the weighted signals of the former neurones (see
Cornuet et al., 1996; Mastrorillo et al., 1997). Let
wi and xi be the weight and the signal outgoing
from the former neurone i (layer n); the incoming
signal for one neurone in the layer n+1 will be:

z=% wi�xi (1)

The outgoing signal for this neurone in layer n+1
will then be:

f(z)= [1+exp(−z)]−1 (2)

For the input layer, incoming signals correspond
to the variables used to classify individuals (the 71
alleles). The outgoing signals of the output layer
designate the category where the studied individ-
ual will be assigned by the network. The decision
is made in the light of the highest score. Neverthe-
less, as is mentioned in Section 2.4, absolute out-
put values can and should be discussed. For
example, individuals with a score of one in a
group can be considered as quite accurately
classified in this category but the interpretation of
individuals with intermediate scores (0.5 for ex-
ample) is not as easy. On the other hand, individ-
uals with scores of zero to 0.1 in their original
category can be considered to be incorrectly
classified.

The network must be trained in order to clas-
sify individuals correctly. A training data set (ran-
domly chosen in the global data set) is used to
modify the weights of the different connections in
order to maximise the percentage of well-classified
individuals. We used a ‘back-propagation’ al-
gorithm. First, the initial weights are randomly
distributed. They are then modified iteratively de-
pending on the differences between expected and
observed output signals (assignation scores; see
Cornuet et al., 1996; Mastrorillo et al., 1997).

identified in salmon (Salmo salar). Two of these
four loci were highly variable (Strutta 58 and
MSU 4 with 38 and 18 alleles respectively). The
two others displayed only a few alleles in com-
parison with the usual microsatellite variability
(seven alleles for MST 73 and eight for MST 15).
PCR and analyses procedures are described in
Aurelle and Berrebi (1998).

2.3. Artificial neural networks

A classic feed-forward network (Rumelhart et
al., 1986) was used in the study. This network had
three layers: an input layer, a hidden layer and an
output layer. The input layer was connected with
the variables used for discrimination; in our
study, these variables were the 71 alleles coded as
follows: for each allele, each individual was noted
zero if it did not possess it, one if the fish was
heterozygotic for the allele and two if it was
homozygotic for it. The hidden layer was reduced
to two neurones to avoid too large a number of
parameters; this choice did not reduce the net-
work efficiency beyond reasonable limits. The
number of neurones in the output layer corre-
sponds to the number of categories in which
individuals should be classified (depending on the
analyses, see Section 2.4).



D. Aurelle et al. / Ecological Modelling 120 (1999) 313–324 317

Numerous iterations are usually necessary to ob-
tain a good percentage of well-classified individu-
als without an over-fit to the training data set.
Effectively, if the percentage of well classified
individuals is much higher for the learning data
than for the test data (see below), we can deduce
that the network has learned the training data
particularities and cannot be applied to a more
general situation.

A hold-out procedure (Kohavi, 1995) can be
used to test the validity of the network. For this
purpose, a data set with some known categories is
divided into two parts. The first part is used for
training the network. When the training proce-
dure has been completed, the network is then
applied to the second part and we can evaluate
the percentage of well classified individuals for
data not used for learning. This second part is
then used as a test. Once it has been verified that
the network is well suited and does not over-fit
the learning data, it can be applied to unknown
data (application stage).

If the data set is too small to be divided into
two parts or if its composition is not well known
and possibly heterogeneous, one can use the
leave-one-out procedure (Kohavi 1995). For ex-
ample, for a data set with N individuals, training
is performed with N−1 individuals (by assuming
that their categories are known) and the network
is applied to the Nth individual, which is then
classified according to its proximity to one of the
previously learned categories. This analysis is re-
peated for the N individuals which are all assigned
to one group. Given the high number of training
stages (N steps), the number of iterations for each
training is limited to 500.

For analysis of the results, each individual was
assigned to the category where it showed the
highest score. At the population level, it is inter-
esting to study the individual score distributions
for the various categories. In order to analyse the
contributions of the different alleles to classifica-
tion, we used the Garson–Goh algorithm (Gar-
son, 1991; Goh, 1995; Lek et al., 1996a,b). This
algorithm determines the relative importance of
the various input variables by taking into account
the weights of the hidden layer neurones con-
nected with these input. Briefly, for each hidden

neurone, the weight of the connection from one
input variable to this neurone is multiplied by the
weight of one output connection; these products
are summed for all the output connections and
then expressed relatively as a percentage for the
comparison of all input variables. These percent-
ages are intended to express the informative con-
tent of each variable.

2.4. Analysis protocols

(1) First, we tested the effectiveness of the
method for a situation in which some genetic
markers different from microsatellites were able
to distinguish between several categories. Here,
modern and ancestral individuals can be separated
with allozymes (especially with the LDH-5* lo-
cus). The training set consisted of four ancestral
populations (Bastan, Béhérékobentako, Dan-
charia and Andurentako) versus four modern
populations (the three hatcheries and Luz). This
distinction was analysed using a hold-out (1a) and
then a leave-one-out (1b) procedure.

2) We then analysed the hatchery populations.
The different strains are assumed to be genetically
quite similar so the sample analysed should be
representative of the different hatchery strains
used in the country. We tried to verify these
assumptions by using a leave-one-out procedure
(for the analysis of all individuals and because one
strain may be heterogeneous) with three cate-
gories corresponding to the three strains analysed.

3) We also sought wild modern Atlantic popula-
tions. As a modern population may be heteroge-
neous and contain wild and domestic fishes, we
decided to use a leave-one-out procedure with two
classes comparing each modern river population
to hatcheries which were pooled (according to the
results of analysis two showing the genetic homo-
geneity of these strains). Three tests were per-
formed: Chiroulet versus hatcheries,
Oussouet/hatcheries and Luz/hatcheries.

4) The other river populations (ancestral and
mixed) were also compared to hatcheries by the
leave-one-out method to examine the potential
influence of domestic fishes in these samples. The
leave-one-out procedure is useful for this com-
parison because each fish is analysed individually
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and the presence of a foreign fish (a domestic
fish in a river) can theoretically be detected. We
compared Bastan with the pooled hatcheries,
Béhérobie versus hatcheries and Marcadau ver-
sus hatcheries.

3. Results

For each analyses we will give some percent-
ages of so-called ‘incorrectly classified individu-
als’: this indicates individuals which were not
classified by the network in the population
where they were sampled. Nevertheless, they can
either be classified in the population from which
they originate (as for example some domestic
fishes classified in the hatchery category but
sampled in one river) or they can effectively cor-
respond to some errors of the network.

3.1. The ancestral—modern distinction

(1a) The percentage of incorrectly classified
individuals by leave-one-out is 2% in the global
comparison between ancestral and modern. This
proportion is 1% among supposedly modern in-

dividuals and 7% for populations expected to be
ancestral. Analysis of the distribution of the
scores within the ancestral category for ancestral
populations (Fig. 3) shows that most individuals
(65%) score between 0.8 and one; 26% are be-
tween 0.5 and 0.8, corresponding to less sharp
and correct assignation, like the 2% scoring be-
tween 0.3 and 0.5. Finally, 7% should really be
classified in the other group (score between 0.1
and 0.3). Conversely, more than 80% of modern
individuals scored between zero and 0.1 and
were then well classified in their original cate-
gory. 1% scored between 0.9 and one and were
assigned to the ancestral type whereas they were
in a modern sample.

(1b) With the hold-out procedure, we ob-
served 1% of incorrectly classified fishes in the
learning stage and 5% in the test. When this
network is applied to new populations, the per-
centage of modern individuals can be evaluated
and compared to the frequency of the LDH-5*
modern allele (Table 2). There is a reasonably
good correlation between the two sets of vari-
ables.

For this analysis, the contributions of the dif-
ferent alleles to the network are shown in Fig.

Fig. 3. Score distribution in the ancestral category for the leave-one-out comparison between ancestral and modern. The first
category corresponds to scores of between zero and 0.1 and the second to scores of between 0.1 and 0.2,....
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Table 2
Percentage of modern individuals in four populations as pre-
dicted by artificial neural network compared with the fre-
quency of modern LDH5* allele

Neural network Allozyme predictionsPopulations
predictions (% mod- (% modern alleles)
ern individuals)

Béhérobie 2732
Marcadau 3353

8973Chiroulet
Oussouet 8273

than those that are fairly rare, but with some
exceptions. Some rare alleles can be useful or not,
depending on the analysis.

3.2. The different hatchery strains

(2a) In the leave-one-out analysis with three
categories corresponding to the three hatchery
strains, 19% of the individuals were found to be
incorrectly classified, which is high compared to
the previous analyses. The score distribution of
each strain in its corresponding category (Fig. 5)
shows that only a very small proportion of indi-
viduals scored between 0.8 and one (2.6%; none
for Brassac and Canourgue); most scores are be-

4. On the x axis, alleles are classified by increasing
abundance in the overall data set. The more fre-
quent alleles usually contribute more to analysis

Fig. 4. Contributions of the different alleles to the leave-one-out ancestral/modern. Alleles are set out on the x axis according to their
frequency in the overall data set (all loci are included). Contributions are computed with the Garson–Goh algorithm (Garson, 1991;
Goh, 1995; Lek et al., 1996a,b).

Fig. 5. Scores of the different hatcheries individuals in their own category for the leave-one-out with three groups corresponding to
the three hatchery strains: Canourgue, Brassac and Suech.
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Table 3
Percentage of incorrectly assigned individuals for each of the three comparisons between modern river and hatchery populations.
Such individuals are assigned to the opposite category, e.g. 6% of Chiroulet individuals are classified in ‘hatcheries’

Oussouet/hatcheriesComparison Luz/hatcheriesChiroulet/hatcheries

river populations 6 8 5

3hatcheries 35

Fig. 6. Distribution of the scores in the hatchery class for the comparison between Oussouet (modern river population) and
hatcheries (the three domestic strains analysed have been pooled). 1=hatchery, 0=Oussouet.

tween 0.5 and 0.6 (75%) and a large proportion of
fishes scored between zero and 0.1 (18%, corre-
sponding to incorrectly classified individuals).

(2b) In the hold-out procedure, 2% of the indi-
viduals in the training set were not correctly
classified, but the test showed 17% errors. This
would tend to show that the network was suited
to the features of the learning data set but not
well suited to new data. There may be too small
an overall difference between the different strains,
preventing good application to new data.

3.3. The ‘wild’ modern populations

The percentages of incorrectly classified individ-
uals for each of the three leave-one-out compari-
sons with hatchery samples (Luz, Chiroulet and

Oussouet compared with domestic fishes) are
given in Table 3. In the three river populations,
the percentage of individuals assigned to domestic
types varied from 5 (Luz) to 8% (Oussouet).

In the Oussouet/hatcheries comparison, the
score distribution of Oussouet individuals in the
hatchery category placed most individuals be-
tween 0.1 and 0.2 (Fig. 6), but with a large
proportion between 0.2 and 0.5. Individuals with
a result higher than 0.5 were all in the 0.9–one
range and were then well assigned to hatcheries.
Almost 80% of domestic individuals, scored be-
tween 0.8 and one. Individuals with a score lower
than 0.5 were all in the 0–0.1 range and were then
classified as Oussouet. It appeared to be more
difficult to classify wild trout than domestic ones
in this analysis.
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3.4. Comparison of the other ri6er populations
with hatcheries

In the leave-one-out comparison between an
ancestral population (such as Bastan) and hatch-
eries, we obtained 1% ‘errors’ in the domestic
strains and 3% in the ancestral population. How-
ever, analysis of the score distribution in the
hatcheries category (Fig. 7) shows that 97% of the
Bastan fishes scored between 0.4 and 0.5; the
remaining 3% corresponded to fishes classified as
domestic (score between 0.9 and one in this
group). In contrast, hatchery individuals are all
well classified with scores between 0.6 and one in
the hatchery category. The computation proce-
dure may perhaps explain why no Bastan individ-
ual displayed a high score (between 0.8 and one)
in its own category: as the time required by this
technique is quite long, the number of iterations
for the learning of each individual was limited to
a maximum of 500. However, there must be a
phenomenon making learning more difficult for
this comparison than for the former ones. The
same analysis was performed with Béhérobie
(with some similar results to Bastan) and with
Marcadau.

For Marcadau (Fig. 8), 40% of the individuals
displayed a hatcheries category score of between
0.4 and 0.5; 60% scored between 0.9 and one and
were then assigned to domestic type. These results

agree well with morphological observations and
with information from local managers, which tend
to show that this population is quite heavily
stocked. In this set of analyses, the scores of wild
trout are limited to 0.5. However, if we agree that
individuals with scores of between zero and 0.5 in
the hatcheries category are wild trout, we can
deduce that Marcadau is the population analysed
that has been most modified by stocking.

4. Discussion

When the trout classes had been previously well
defined using allozymes (comparison of ancestral
and modern, tests (1a) and (1b)), the first analyses
confirm that neural networks give good results
when applied to microsatellite data despite all the
problems usually associated with these markers,
and especially the presence of rare alleles, ances-
tral polymorphism and homoplasy which means
that some alleles of the same size are not always
identical by descent (Jarne and Lagoda, 1996).
Because of the high mutation rate of microsatel-
lite loci (particularly for loci with a high number
of alleles), and because of a possible relatively
recent coancestry of the populations analysed
(both natural and domestic), it is difficult to find
diagnostic alleles separating wild and hatchery
Atlantic populations and which could be used for

Fig. 7. Distribution of the scores in the hatchery category for the leave-one-out Bastan/hatcheries; 1=hatcheries, 0=Bastan.
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Fig. 8. Score distribution in the hatcheries category for the leave-one-out Marcadau/hatcheries. 1=hatcheries, 0=Marcadau.

several river drainage basins. For this reason,
multilocus analysis is more useful and particularly
ANN which can probably take into account quite
small differences in allelic frequencies. Cornuet et
al., (1996) have already obtained good results in
the classification of certain bee (Apis mellifera)
lineages with microsatellite data and ANN.

4.1. Efficiency and utilisation of artificial neural
networks

Homoplasy does not appear to drastically re-
duce the learning capacities of the neural network.
For rare alleles, the graph showing the contribu-
tions of the different alleles according to their
frequencies indicates that the most informative
alleles are also often quite frequent; nevertheless,
less frequent alleles may provide more informa-
tion in some comparisons. In all cases, learning
appears to be able to recognise the most discrimi-
nant information (for a particular comparison)
among all the input variables, and this technique
does not require any particular adaptation of the
data. Neural networks gave some better results
than classical discriminant analysis, as is shown
by Cornuet et al. (1996).

For the first analysis (ancestral/modern com-
parison), the application of the network to popu-
lations other than those used for learning gave

good results. The percentages of modern individu-
als predicted by the network agree well with the
frequencies of modern alleles of LDH-5*. The
differences between these two parameters may be
caused by different behaviour of the two markers,
with randomly different introgression rates. The
four supposed neutral microsatellite markers
probably give a better description than a single
allozymic (possibly selected) LDH-5* marker.
Moreover, one should keep in mind that these are
a different type of information (allelic frequencies
versus percentage of individuals).

Caution was required in this study because of
the sample characteristics. Some samples (espe-
cially river populations) are or might be heteroge-
neous. Wild and domestic individuals may be
found in the same sample of some of the ‘modern’
populations. For this reason, it was decided to
test the leave-one-out procedure. It gave good
results for the first comparison (ancestral/mod-
ern), and was then used for other comparisons.
The technique appears well suited for the study of
heterogeneous samples.

With both the leave-one-out and the hold-out
procedures, neural networks associated with mi-
crosatellites confirm the distinction between mod-
ern Atlantic (wild or domestic) and ancestral
Atlantic trout, which had previously only been
analysed using allozymes.
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4.2. Application to hatchery strains

Hatchery samples are needed as reference for
assessing the proportion of domestic individuals
in rivers. Analysis of these strains is necessary to
evaluate the genetic diversity of domestic fishes;
this shows whether the domestic samples analysed
can be considered as representative of those used
for stocking or if there is too much variability
among hatcheries. Several studies have shown
that these domestic strains were genetically quite
similar (Guyomard, 1989; Garcia-Marin et al.,
1991), but we tried to verify this assumption using
microsatellites and ANN. The high number of
incorrectly classified individuals (both in the
leave-one-out and hold-out results) underlines this
homogeneity. The lack of differences may prevent
good learning. It also shows that ANN can indi-
cate when there is not enough differentiation be-
tween the categories used for learning as the
network will not always give good percentages of
correctly classified individuals, whatever is pre-
sented for learning. In our study, this homogene-
ity of domestic samples enabled us to pool them
for the next analyses.

4.3. Characterisation of wild modern populations

Discriminating between wild and domestic
modern Atlantic trout is an important objective.
The identification of populations not or almost-
not affected by stocking is useful for the protec-
tion and management of the genetic diversity of
this species as this is threatened by stocking (Fer-
guson et al., 1995). The use of the leave-one-out
procedure for the comparison of each of the
modern populations with hatchery populations
gave low percentages of domestic individuals
(from 5 to 8%) within the three modern popula-
tions (Chiroulet, Oussouet and Luz) which
seemed to be mainly wild according to the mor-
phological characteristics of their fishes. This
would tend to show that these rivers are only
modified by stocking slightly or not at all. Apart
from this practical aspect, these results also show
that neural networks are efficient even for geneti-
cally quite similar (but differentiated) entities.

The comparison of other samples with hatchery
populations did not always give such clear results.
For example, a large number of Bastan individu-
als had intermediate scores. This is probably
linked with microsatellite properties and shared
alleles, which in this case required more time for
learning. However, individuals with intermediate
scores could also be hybrid individuals and this
raises the problem of how they are classified by
the network. For example, in the Marcadau popu-
lation (known to be heavily stocked), 40% of
individuals displayed intermediate scores. This is
probably the consequences of hybridisation of
wild and domestic fishes; the strong impact of
stocking on this population is confirmed by the
percentage of individuals assigned to the domestic
type (60%). This shows that when such individu-
als are present in a river population, the network
is able to recognise them. There may be some
hybrids in the Bastan population, (F1 or individu-
als resulting from backcrosses) even if allozymes
indicate that it is a pure ancestral population;
effectively, different markers can give different
results because of selection and genetic drift.
Moreover, as has already been explained, the
training procedure may also cause this high pro-
portion of intermediate scores. It should be noted
that hardly any individuals in this population are
clearly classified in the domestic category, as
would have been expected in case of a high stock-
ing impact (e.g. Marcadau). This population is
probably not highly introgressed by domestic
alleles.

Although the interpretation of these results is
not as clear as for the former analyses, ANNs
provided important information about the genetic
composition of these populations.

5. Conclusion

From a technical point of view, our results
confirm that ANNs are well suited to population
genetics data. Effective analysis requires reference
populations well chosen for the study, relatively
balanced sample sizes and an appropriate valida-
tion procedure (hold-out or leave-one-out). For
example, the leave-one-out procedure seems well
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suited for mixed populations whereas the hold-out
procedure gives a more precise idea of the predic-
tion capability of the model. From a more funda-
mental point of view, this study confirms the
presence in this area of several trout forms: two
wild types (modern and ancestral) and one domes-
tic form, which can coexist in the same river.
Moreover, we identified certain pure or almost-
pure wild populations. This raises the problem of
their management and protection and is a new
example of low stocking effectiveness. It is also an
example of practical application of ANNs in ecol-
ogy and population genetics.
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