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Ecological communities consist of a large number of species. Most species are rare or have
low abundance, and only a few are abundant and/or frequent. In quantitative community
analysis, abundant species are commonly used to interpret patterns of habitat disturbance
or ecosystem degradation. Rare species cause many difficulties in quantitative analysis by
introducing noises and bulking datasets, which is worsened by the fact that large datasets
suffer from difficulties of data handling. In this study we propose a method to reduce the
size of large datasets by selecting the most ecologically representative species using a self
organizing map (SOM) and structuring index (SI). As an example, we used diatom
community data sampled at 836 sites with 941 species throughout the French
hydrosystem. Out of the 941 species, 353 were selected. The selected dataset was
effectively classified according to the similarities of community assemblages in the SOM
map. Compared to the SOM map generated with the original dataset, the community
pattern gave a very similar representation of ecological conditions of the sampling sites,
displaying clear gradients of environmental factors between different clusters. Our results
showed that this computational technique can be applied to preprocessing data in
multivariate analysis. It could be useful for ecosystem assessment and management,
helping to reduce both the list of species for identification and the size of datasets to be
processed for diagnosing the ecological status of water courses.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Biological communities are commonly used as indicators of
ecosystem quality. Community structures are determined by
many environmental factors in different spatial and temporal
scales (Stevenson, 1997; Snyder et al., 2002). Community data
are composed of a large number of species collected at many
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sampling sites at different times. A commonly observed
phenomenon in field surveys is that the vast majority of
species are represented by low abundance while only a few
species are abundant. Preston's canonical log-normal distri-
bution is the most widely accepted formalization of the
relative commonness and rarity of species (Preston, 1962;
Brown, 1981).
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In quantitative community analysis, abundant species are
commonly used to interpret patterns of habitat disturbance or
ecosystem degradation, whereas rare species are generally
excluded from the analysis. Although the effects of rare
species are negligible on statistical results, they introduce
noise and cause difficulties in data analyses. By removing
noise, the more important information is more likely to be
detected (McCune et al., 2002). To solve the problems of rare
species in community ecology, several different approaches
(i.e., down weighting, overweighting and deleting species) are
applied depending on researchers' interests (Mante et al.,
1995, 1997; Cao et al., 2001; Fodor and Kamath, 2002). This is
regarded as a preprocessing stage in data mining. As
illustrated in Fig. 1, data mining consists of two main steps,
data preprocessing and pattern recognition (Fodor and
Kamath, 2002). Preprocessing is often time consuming, yet
critical as a first step. To ensure the success of the datamining
process, it is important that the features extracted from the
data should be representative of the data to be relevant to the
issues for which the data are collected.

In community ecology, ordination and classification techni-
ques are commonly used to simplify the interpretation of a
complex dataset. However, this purpose is defeated if there are a
very largenumberof variables.A largenumberof variables in the
analysis may be informative to investigators in the exploratory
phase of the study, yet it is difficult to point out themajor issues
contained in the dataset if the ordination diagrams are cluttered
bynumerousvariables (Palmer, 2005).Therefore, it isdesirable to
reducethenumberofvariables formultivariateanalysis inmany
cases. However, it is impossible to reduce the number of
variables without the risk of losing information. In order to
remove variables, one should make sure that ecologically
relevant information is retained as far as possible.

Deleting rare species could be a useful way of reducing the
bulk of ecological datasets and noise generated without losing
Fig. 1 –Schematic diagram o
much information (McCune et al., 2002). The simplest way to
delete rare species is to consider the frequency of species in
samples (MJM Software Design, 2000), and to carry out direct or
indirect gradient analyses including Principal Component
Analysis, Correspondence Analysis, Detrended Correspon-
dence Analysis, Canonical Correspondence Analysis, etc.
However, traditional multivariate analyses are generally
based on linear principles (James and McCulloch, 1990), and
cannot overcome various problems: biases due to complexity
and non-linearity residing in datasets, and inherent correla-
tions among variables (Lek et al., 1996; Brosse et al., 1999). Self-
organizingmap (SOM) (Kohonen, 1982), on the other hand, has
been used as an alternative to traditional statistical methods
to efficiently deal with datasets ruled by complex, non-linear
relationships (Lek et al., 1996; Lek and Guégan, 2000). The SOM,
an unsupervised neural network, has been implemented to
analyse various ecological data (Lek and Guégan, 1999, 2000;
Recknagel, 2003): evaluation of environmental variables (Park
et al., 2003a; Céréghino et al., 2003), classification of commu-
nities (Chon et al., 1996; Park et al., 2003b; Tison et al., 2005),
water quality assessments (Walley et al., 2000), and prediction
of population and communities (Céréghino et al., 2001; Obach
et al., 2001). The SOM produces virtual communities in a low
dimensional lattice through an unsupervised learning pro-
cess. Input components (i.e., species) could be visualized on a
SOM map to show the contribution of each component in the
self-organization of the map (Park et al., 2003b). These
component planes can be considered as a sliced version of
the SOM map and provide a powerful tool to analyze the
community structure. But, when we consider a lot of species
(i.e., several hundreds or thousands), it is difficult to compare
all component planes for all species. It becomes necessary to
develop an efficient method to select species for removal.

In this studywe propose a computationalmethod to reduce
the number of species in datasets with a large number of
f a data mining process.



Fig. 2 –Distribution of diatom sampling sites in a French hydrosystem.
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species without losing much information. The datasets with
the reduced number of species were further evaluated in
relation to environmental conditions. This approach can
contribute to practical ecosystem management in handling
huge datasets and would broaden the scope of SOM in mining
community data in diverse quantitative ecological studies.
2. Materials and methods
Fig. 3 –Distribution of occurrence frequency of diatom species
in the dataset.
2.1. Ecological dataset

From the Cemagref French Diatom Database, 836 samples
were extracted. The data had been collected nationwide
throughout France (Fig. 2) in summer from 1979 to 2002
according to the NFT 90-354 recommendations (AFNOR, 2000).
Diatom species were identified at a 1000× magnification (Leitz
DMRD photomicroscope) according to Krammer and Lange-
Bertalot (1986, 1988, 1991a, 1991b): examination of permanent
slides of cleaned diatom frustules, having been digested in
boiling H2O2 (30%) and HCl (35%), and mounted in a high
refractive index medium (Naphrax, Northern Biological
Supplies Ltd, UK; RI=1.74). A relative abundance of species
was obtained by randomly selecting 400 individuals per
sample for taxonomic identification to species level.

Among the 941 species recorded in the dataset, 490 were
observed in less than 10 samples (Fig. 3). More than 52% of
species were only identified in less than 1.2% of samples. Some
rare species, which are ecologically important, showed middle
or high abundance but occurred only in a limited number of
samples. They characterize particular types of environmental
conditions, for example Eunotia exigua for acidic rivers. Such
species must be considered as important, if we want to extract
the most relevant ecological information from the datasets
although their occurrence numbers are low. On the other hand,
about 3% abundant species (25 species) were observed in more
than 50% of samples. In particular, the species Achnanthidium
minutissimum was most frequently observed in 737 samples. A
few intermediately tolerant species are also wide spread in the
dataset, like Navicula cryptotenelloides. Overall, a large variation
in abundance was observed in the dataset.

Theoriginaldatasetconsistedof836sampleswith941species.
The species abundance was transformed by natural logarithm.
Toavoidaproblemof logarithmzeros, thenumber1wasadded to
the density of each species. Subsequently the transformed data
were proportionally scaled between 0 and 1 over the range of the
minimum and maximum abundance for each species. Through
these procedures, the weights (i.e., importance) for the species
with low abundance were accordingly increased.

2.2. Overall modelling procedure

With the rescaled dataset, SOM classified samples in 2D space
and produced weight vectors representing the approximation of



Fig. 4 –Schematic diagram of SOM (a), data structure of virtual community units produced in the SOM learning process (b), and
topological distance of the SOM output units used in the SI calculation (c).
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input data and typical community types. To quantify the
contribution of each species in SOM patterning, a structuring
index (SI) (Park et al., 2005)was calculatedusingprototypevectors
of SOM. Subsequently, several different datasets were produced
based on the SI histogram by deleting species with low SI in each
class of the histogram. These new datasets were trained
separately with a new SOM. New SI values were calculated for
each species in different datasets. Finally, we computed squared
Euclidean distances of SI between the original dataset and
reduced datasets. Based on the distances, we choose a criterion
for the species to be selected for removal from the datasets while
minimizing the loss of ecological information.
2.3. Self-organizing map (SOM)

The SOM approximates the probability density function of input
data through an unsupervised learning algorithm, and is an
effectivemethod for clustering, but also for the visualization and
abstraction of complex data (Kohonen, 2001). The algorithm has
properties of neighborhood preservation and local resolution of
the input space proportional to the data distribution (Kohonen,
1982, 2001). The SOM is widely applicable to the fields of data
management, such as data mining, classification, and biological
modelling in terms of a nonlinear projection of multivariate data
into lower dimensions (Lek and Guégan, 2000; Kohonen, 2001;
Park et al., 2003a, 2003b). The SOMconsists of two layers: an input
layer formed by a set of nodes (or neurons which are computa-
tional units), and an output layer formed by nodes arranged in a
two-dimensional grid (Fig. 4a). In this study, each input node
accounts for the abundance of each species. Theoutput layerwas
made of a total of S output nodes in the hexagonal lattice (i.e., 150
nodes in a grid of 15×10 cells in this study) for providing better
visualization. A hexagonal lattice is preferred because it does not
favor horizontal or vertical directions (Kohonen, 2001). The
number of nodes was determined as 5x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of samples

p

(Vesanto, 2000). Subsequently the map size was determined.
Basically, the two largest eigen values of the training data were
calculated and the ratio between side lengths of themapgridwas
set to the ratio between the two maximum eigen values. The
actual side lengthswere thensetso that theirproductwasclose to
the determined number of map units as stated before.

In this study, each sample has been assigned to one output
node as a result of SOM calculation. Each output node has a
vector of coefficients associatedwith input data. The coefficient
vector is referred to a weight (or connection intensity) vectorW
between input and output layers. The weights establish a link
between the input units (i.e., species) and their associated
outputunits (i.e., groupsof samples). Therefore, theoutputunits
are referred to virtual community units representing typical
community composition of samples assigned in the output
units (Fig. 4b). Each vector of each virtual community unit is
referred to a prototype vector.

The algorithm can be described as follows: when an input
vector X (in this case, the relative abundance of 941 species in
a sample) is presented to the SOM, the nodes in the output
layer compete with each other, and the winner (whose weight
is theminimumdistance from the input vector) is chosen. The
winner and its neighbors predefined in the algorithm update
their weight vectors according to the SOM learning rules as
follows:

wijðtþ 1Þ ¼ wij þ aðtÞdhjcðtÞ½xiðtÞ−wijðtÞ� ð1Þ

wherewij(t) is a weight between a node i in the input layer and
a node j in the output layer at iteration time t, α(t) is a learning
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rate factor which is a decreasing function of the iteration time
t, and hjc(t) is a neighborhood function (a smoothing kernel
defined over the lattice points) that defines the size of
neighborhood of the winning node (c) to be updated during
the learning process. This learning process is continued until a
stopping criterion is met, usually, when weight vectors
stabilize or when a number of iterations are completed. This
learning process results in the preservation of the connection
intensities in the weight vectors.

2.4. Structuring index (SI)

The SI was originally developed to define species showing the
strongest influence on the organization of the SOMmap (Park et
al., 2005). Tison et al. (2004, 2005) used theSI to evaluate relevant
diatomspecies in the classification of diatomcommunities. The
SI is the value indicating the relative importance of each species
in determining the distribution patterns of the samples in the
SOM. Therefore, the set of species showing high SI can be
considered as the indicator species.

The SI is calculated from the sumof the ratios of the distance
betweentheweights (i.e., connection intensities) ofall species in
the SOM and the topological distance between two SOM units
Fig. 5 –Classification of 836 samples through the training of SOM
hexagons in each SOM unit represent the number of samples as
names were not given in the SOM units because of limited space
dendrogram of the hierarchical cluster analysis using Ward's lin
species dataset, and d; for 353 species dataset). The smallest bra
numbers were not presented due to the small space.
(Fig. 3c). This results in representing distribution gradients for
each species in the trainedSOM. A structuring index of species i,
SIi, is expressed in the equation as follows:

SIi ¼
XS

j¼1

Xj−1

k¼1

jwij−wikj
jjrj−rkjj

ð2Þ

where wij and wik are respectively the connection weights of
species i (in the input layer) in SOM units j and k,||rj−rk|| is the
topological distance between units j and k, and S is the total
number of SOM output units. SI considers the distribution
gradients of each species in the SOM map. Species showing a
stronggradientdisplayahighSIvalue,whereasspeciesshowinga
weakgradientpresenta lowSIvalue.Thus, thehigher thevalueof
SI, the more relevant the variable is to the structure of the map.
3. Results

3.1. Patterning samples with a large dataset

Diatom communities consisting of 941 species were patterned
through the learning process of the SOM (Fig. 5a). Grey scale
with 941 species (a, b) and 353 species (c, d). Gray scale
signed to each SOM unit in the range of scale bars. Sample
. The SOM units were classified into 11 clusters based on the
kage method with the Euclidean distance measure (b; for 941
nches in the dendrogram represent SOM units. The unit
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hexagons represent the number of samples assigned in each
SOM unit in the range of 2 (small white)–22 (large black). The
SOM units were further grouped into 11 clusters based on the
dendrogram of a hierarchical cluster analysis (Fig. 5b).

The SOMweight vectorswere used for the classification of the
units. Overall diatom communities were well organized in the
SOM map according to similarities of their species composition.
Fig. 6 –Differences of 8 environmental factors at different clusters
species (b).
Each cluster was characterised by the ecological conditions and
pollution levels of the samples (Fig. 6a). The variation of each
environmental parameter was represented with a 95% confi-
dence interval. All 8 environmental variables were significantly
different between clusters (Kruskal–Wallis test, P<0.001).

Through the SOM learning process, the weight vector was
approximately proportional to the probability density of the
defined in the SOMmap trained with 941 species (a) and 353
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data. Therefore, each species distribution in the SOM output
units can provide their importance in the community structure.
Fig. 7a shows examples of distribution gradients of species in
the SOM map trained with 941 species. Dark represents a high
valueof speciesdensity in their givenscalebar,whereaswhite is
a low value. The values indicate estimated abundances of
species in log scale which were denormalized from weight
vectors based on the minimum and maximum values of each
species defined in the input dataset. All species showed the
strong gradient in different ways, although some species
showed bi- or multi-modal distribution patterns. While some
species showed very similar patterns of gradient on the map,
their contributions to patterning on the map were different by
displaying different abundances and SI. For instance, Eunotia
bilunaris andAchnanthidium eutrophilumweremainly distributed
in the samples assigned to the upper left areas of the SOMmap.
Fig. 7 –Gradient distributions of example species in the SOM ma
following species acronyms are the SI values for each species. S
learning process in log scale. AAMB, Aulacoseira ambigua, ACOF
minutissimum, ADSU; A. subatomus, ASHU; Achnanthes subhu
Planothidium ellipticum, SKPO; S. potamos, SLCO; S. linearis.
However, estimated abundances between two species were
strongly variable, indicating differences of their contributions to
communitypatterns.Thesamesituationwasobservedbetween
Achnanthidium subatomus and Surirella linearis and between Ske-
letonemapotamos andGomphonema entolejum. From these typesof
visualizing component planes, we can evaluate the relative
importance of each species. For instance, A. subatomus is more
important in characterizing samples belonging to the middle
upper areas of the SOMmap than S. linearis.

However, evaluation of contributions becomes difficult
from component planes when the numbers of input variables
(i.e., species) are very large as stated before. In this study the
relative importance of each species was expressed through
the SI. The priority of selection for the datasets was
determined by the values of the SI (Fig. 8). The SI values of
example species are given in Fig. 7, while a profile of the SI
p trained with 941 species (a) and 353 species (b). Values
cale bar shows species abundance calculated through SOM
; Amphora coffeaeformis, ADEU; A. eutrophilum, ADMI; A.
dsonis, EBIL; E. bilunaris, GENT; G. entolejum, PTEL;



Fig. 8 –Number of species at different classes of SI in the
original dataset containing 941 species. Based on the SI
classes, 8 different datasets were built by excluding species
showing low SI.

Fig. 9 –Similarity distances of species SI between the original
dataset and 8 reduced datasets. In the distance calculations,
145 species included in the smallest dataset were used.
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values over 941 species is given in different classes in Fig. 8.
More than 49% of species showed less than 20 SI values (in the
first and the second classes from the left on the x axis). The
number of species decreased gradually until the 8th class (60–
70 SI). The contributions of most species beyond the 8th class
were very low in defining community patterns.

3.2. Selection of relevant species

The next step is to evaluate different datasets where relevant
species were selected according to values of SI. SOM trainings
were independently repeated with 8 successive datasets as
shown in Fig. 8. The SI values were summed for all species in
each dataset. Subsequently the sum of Euclidean distances of
the SI values between the original dataset and the reduced
datasets were calculated (Fig. 9). Datasets consisting of a small
number of abundant species showed high SI values for most
species, whereas larger datasets with diverse species covered
species with both high and low SI values. As the number of
species decreased, the Euclidean distance increased abruptly
around the number of species approximately equal to 353
whereas the distances were gradually decreased as the
number of species further increased to 941. The profile of the
distances indicates that elimination of species after 353 would
not seriously affect the predictive characteristics of the
original dataset. Consequently the profile of the distances
(Fig. 9) shows a criterion to choose the SI value to select the
appropriate number of species while minimizing the loss of
information due to removal of extra species. Here, we chose
the 3rd class with 353 species based on the above reasoning.
Regression analyses were carried out between SI values of the
total species (941) and each of the datasets with the reduced
number of species. In the case of the 353 species dataset, the
regression determination coefficient was distinctively high
(R2=0.991) (Fig. 10) while the coefficients for the datasets with
a lower number of species (145 and 220) were substantially
lower. This indicates that the community information is
preserved in a new reduced dataset with 353 species.
3.3. Patterning samples with reduced dataset

To evaluate the dataset with 353 relevant species, 836 samples
were trained with the SOM (Fig. 5c). The numbers of samples
assigned to each SOM unit are indicated in a grey scale as
hexagons ranging from 0 (small white) to 47 (large black). The
SOM units were classified into 11 clusters through a hierarchi-
cal cluster analysis based on Ward's linkage method (Fig. 5d).
The grouping was essentially the same as those of the original
dataset (Fig. 5a,b). Overall, diatom communities were well
organized in the SOM map according to similarities of species
composition. Each cluster was well characterised by the ecolo-
gical and pollution conditions of the sampling sites (Fig. 6b).
All 8 environmental variables were significantly different be-
tween clusters (Kruskal–Wallis test, P<0.001). Samples in
clusters 1–6 (in the upper areas of the SOM map) were mainly
collected from the sites showing higher water quality,
whereas the samples in clusters 7–11 (in the bottom areas of
the SOM map) were observable from disturbed sites. The
difference of communities (communities in good water qual-
ity versus communities under anthropogenic disturbances)
was clearly distinguished in two main clusters in the den-
drogram of the SOM units (Fig. 5d). The clusters were well in
accordance with those of the original dataset with 941 species
(Fig. 5). The characteristics of each cluster are summarized in
Table 1.

Fig. 7b shows the abundance patterns of some selected
species in the reduced dataset with 353 species. The patterns
were similar to the original dataset (Fig. 7a), although their
relative positions in the SOMmap were changed to somewhat
like mirror images. For example, E. bilunaris showed high
values in the upper right areas of the SOM map in the original
dataset, but was abundant in the upper left areas in the
reduced dataset. A. minutissimum showed high values in the
upper right areas in the original dataset, while the abundance
was higher in the upper left areas of the reduced dataset. The
results in Figs. 6 and 7 indicate that removal of a substantial
number of species according to the SI did not affect the
preservation of useful information residing in the original
dataset. Species richness between the original dataset and the



Fig. 10 –Relations of species structuring index (SI) between the original dataset and reduced datasets. The reduced datasets
were built by excluding species showing low SI values. a) Dataset of 830 species, b) dataset of 353 species, c) dataset of 220
species, and d) dataset of 145 species. Solid lines represent linear regression and dotted lines are predictive bands giving
information on individual predictions of the dependent variable in ±0.95 confidence interval.
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reduced dataset with 353 species also showed a strong linear
relationship (R2=0.993).
4. Discussion

Dimension reduction is required when the data are of a higher
dimension than tolerated through long-term or large-scale
field survey. The goal of dimension reduction is to find a
simplified representation of original datawithout losingmuch
information. Dimension reduction can be considered in two
categories: 1) reduction of the number of features representing
a data item (fromm items in the original data to n items in the
reduced data, n<m) and 2) reduction of the number of basis
vectors used to describe the data (Fodor and Kamath, 2002). In
this study we focused on the first category, reduction of the
number of features (species) by excluding rare species that
would generally induce noise in data. The curse of dimen-
sionality (Bellman, 1961) refers to the fact that, in the absence
of simplifying assumptions, the sample size needed to
estimate a function of several variables to a given degree of
accuracy (i.e., to get a reasonably low-variance estimate)
increases exponentially with the number of variables.

A way to avoid the curse of dimensionality is to reduce the
input dimensions of the function to be estimated; this is the
basis for the use of local objective functions, depending on a
small number of variables, in unsupervised methods (Car-
reira-Perpinan, 2001).

Generally, biological community data consists of many
species in many sampling sites for fulfilling various purposes
for ecosystem management and installation of management
policy for ecosystem health. Diatoms used in this study are
also one of the major aquatic taxa considered for monitoring
water quality and for aquatic ecosystem management. In
addition to the fact that the European Water Framework
Directive (European Parliament, 2000) considers benthic
diatoms as one of the key organism groups for assessing the
ecological quality of rivers, diatom communities are consid-
ered as important indicators and have been extensively
investigated. However, sampling diatoms gives a large num-
ber of species inmany samples. It is difficult tomanage a huge
number of species. A lot of research resources are consumed
in identifying species and handling the subsequent datasets.
Therefore, it is important to reduce the size of datasets
without losing relevant information in diatom data.

In this study, we presented a method to choose relevant
species from a large dataset through the learning process of
the SOM. Calculation of the structuring power of each species
was revealed through self organization. The species selected
here (353) showed very similar SOM distribution patterns to



Table 1 – Environmental conditions and representative
species in each cluster using 353 selected species

Clusters Water
courses

Environmental
conditions

Representative
species

1 Upstream High pH, high altitude Achnanthidium
biasolettianum,
Diatoma
ehrenbergii

2 Downstream High pH Amphora
pediculus,
Encyonopsis
microcephala

3 Mid-stream Slightly polluted Fistulifera
saprophila,
Mayamaea
atomus

4 Upstream Moderately polluted,
high altitude

Achnanthidium
subatomus,
Fragilaria arcus

5 Upstream Low pH, low
conductivity

Eunotia exigua,
Frustulia saxonica

6 Downstream Low conductivity Navicula
rhynchocephala,
Gomphonema
exilissimum

7 Downstream High NO3
− Navicula gregaria,

Eolimna minima
8 Downstream Heavily polluted, low

altitude, high PO4
3−,

BOD, NH4+, and
conductivity

Nitzschia
capitellata,
Navicula veneta

9 Downstream Eutrophication, low
altitude

Cyclostephanos
dubius,
Thalassiosira
pseudonana

10 Mid-
downstream

Slightly disturbed Cyclotella
polymorpha,
Nitzschia acula

11 Downstream Moderately Disturbed,
low altitude

Gyrosigma
nodiferum,
Gyrosigma
attenuatum
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those of the original dataset. The similarity was evaluated
through component plans, which caused their relative posi-
tions to be changed in mirror images (Fig. 7). The dataset
selected also showed high correlation of species richness
(R2=0.993) with the original dataset.

There have been several other ways used to reduce data
dimensions. The simplest way is to consider the occurrence
frequency of species in samples as it is for example, in the
statistical software PC-ORD version 4 (MJM Software Design,
2000): users can exclude species fewer than N nonzero
numbers of occurrences (McCune et al., 2002). However, in
this case important species could be excluded from the newly
generated dataset. For instance, some species are site specific
with low occurrences. In this case, these species are very
important to characterize their sampling sites. Therefore, they
should be included in the reduced dataset. Another extreme
case is that when species are observed in many samples with
similar abundance. They do not make a relevant contribution
to the characterization of the ecological conditions of their
sampling sites because they make similar contributions in all
samples. Therefore, they should not be selected as represen-
tative species. If we only consider occurrence frequency to
select relevant species, very common species occurring in all
sample sites are selected as important species, while species
characteristically occurring with high abundance at the
limited sites may be not selected as important species
although they are representative for certain river types. Our
method presented in this study does not suffer from these
problems because the SI indicates species contribution in the
organization of the SOM map, by taking into account
occurrences as well as abundances of each species imple-
mented in the connection intensity of SOM. For instance,
species Achnanthes brevipes, Cavinula variostriata, and Pinnu-
laria acrospheria showed respectively 33.5, 38.6, and 34.3 of SI,
and were chosen in the reduced dataset, although their
occurrence frequencies were low with 6, 7, and 5, respectively.
Species A. brevipes characterized assemblage type 10, C.
variostriata was assemblage type 1, and P. acrospheria was
assemblage type 2 (Fig. 6). In contrast, species Fragilaria
delicatissima, Nitzschia graciliformis, and Pleurosira laevis showed
respectively 19.2, 19.7, and 8.6 of SI, and were not chosen,
although their occurrence frequencies were relatively high
with 30, 23, and 14, respectively.

As shown in this study the SOM can be considered as an
alternative for dimension reduction in the sense that it learns,
in an unsupervised way, a map between a 2D lattice and the
data space (Carreira-Perpinan, 2001). Through the learning
process, the number of reference vectors in the data space is
approximately proportional to the data probability density
and themap in 2D space is topologically continuous. Although
the SOM has been successfully applied in diverse fields
including ecological studies, it has also some shortcomings:
no cost function to optimize can be defined, no general proofs
of convergence exist, and no probability distribution function
is obtained. These shortcomings are overcome through trial
and error.

The SI indicates the relative importance of species in
determining classifications in the SOM. The calculation
procedure of the SI is based on the weight values of the
SOM. Due to the characteristics of the mathematical formula
of the SI, its values depend upon two properties: distribution
patterns of species (limited areas or wide areas) and degree of
occurrence probabilities of each species (high occurrence (or
abundance) species or rare species). Therefore, the SI shows
high values when species are observed in limited samples
assigned to the same areas in SOM with high occurrence (or
abundance). It is very low when a species is observed in many
samples in different clusters or in low densities (or occurrence
frequencies). The index is highly dependent on the training
resolution of the SOM. Therefore, it is also important to choose
an optimum SOMmap size. The SOM should also be smoothly
trained in topology and the map should be optimised. In fact,
this approach requires a lot of computation, however compu-
tation time is not a critical weakness considering the current
speed of processors.

In summary, we propose a method to select relevant
species in a large dataset through a self organizing map and
structuring index. Through this approach, we built a new
dataset with a reduced number of species without losing
much information embedded in the original dataset. This
computational technique could be applied for preprocessing
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data in multivariate analyses and could be useful in ecosys-
tem management needing to reduce the number of variables
in large datasets. Our work on dimension reduction could be
also helpful for data management and data mining in various
other fields of research.
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