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Abstract

Two artificial neural networks (ANNs), unsupervised and supervised learning algorithms, were applied to suggest

practical approaches for the analysis of ecological data. Four major aquatic insect orders (Ephemeroptera, Plecoptera,

Trichoptera, and Coleoptera, i.e. EPTC), and four environmental variables (elevation, stream order, distance from the

source, and water temperature) were used to implement the models. The data were collected and measured at 155

sampling sites on streams of the Adour�/Garonne drainage basin (South-western France). The modelling procedure was

carried out following two steps. First, a self-organizing map (SOM), an unsupervised ANN, was applied to classify

sampling sites using EPTC richness. Second, a backpropagation algorithm (BP), a supervised ANN, was applied to

predict EPTC richness using a set of four environmental variables. The trained SOM classified sampling sites according

to a gradient of EPTC richness, and the groups obtained corresponded to geographic regions of the drainage basin and

characteristics of their environmental variables. The SOM showed its convenience to analyze relationships among

sampling sites, biological attributes, and environmental variables. After accounting for the relationships in data sets, the

BP used to predict the EPTC richness with a set of four environmental variables showed a high accuracy (r�/0.91 and

r�/0.61 for training and test data sets respectively). The prediction of EPTC richness is thus a valuable tool to assess

disturbances in given areas: by knowing what the EPTC richness should be, we can determine the degree to which

disturbances have altered it. The results suggested that methodologies successively using two different neural networks

are helpful to understand ecological data through ordination first, and then to predict target variables.
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1. Introduction

Understanding communities with respect to

environmental features is a fundamental basis for

ecosystem management. Especially in aquatic

ecosystems, the species composition of benthic

communities depends on the diversity and stability

of stream habitats (Cummins, 1979; Ward and

Stanford, 1979) which provide the possibilities of

development (Malmqvist and Otto, 1987). There-

fore, benthic macroinvertebrates are widely used

as indicators of short- and long-term environmen-

tal changes in running waters (Hellawell, 1978;

Lenat, 1988; Smith et al., 1999; Hawkins et al.,
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2000). Species richness (i.e. the number of species
occurring in a given area) is commonly used as an

integrative descriptor of the community (Lenat,

1988), as it is influenced by a large number of

environmental factors, such as environmental

stability (Cummins, 1979; Ward and Stanford,

1979), ecosystem productivity (Lavandier and

Décamps, 1984) and heterogeneity (Malmqvist

and Otto, 1987), and biological factors (Ma-
cArthur, 1965; Feminella and Resh, 1990). The

interactions of these factors can determine gradi-

ents in stream species richness (Vannote et al.,

1980; Minshall et al., 1985). The species richness of

aquatic invertebrates is also strongly influenced by

natural and/or anthropogenic disturbances (Ro-

senberg and Resh, 1993), which may lead to spatial

discontinuities of predictable gradients (Ward and
Stanford, 1979, 1983) and losses of taxa (Brittain

and Saltveit, 1989). Resh and Jackson (1993)

observed that species richness measures were

sensitive to the impact of human activities on

stream ecosystems, and this was particularly true

of some aquatic insects, e.g. Ephemeroptera,

Plecoptera or Trichoptera (EPT), which can be

considered as good biological indicators of dis-
turbance in streams. Thus, the species richness of a

restricted number of selected taxonomic groups is

a good descriptor of the influence of disturbance

upon the biota (Lenat, 1988).

Such ecological data are bulky, non-linear and

complex, showing noise, redundancy, internal

relations and outliers (Gauch, 1982; Jongman et

al., 1995). There are also wide variability in
variables and complex interactions between expla-

natory and response variables (Jongman et al.,

1995). Traditionally, conventional multivariate

analyzes have been applied to solve these problems

(Bunn et al., 1986; Ludwig and Reynolds, 1988;

Legendre and Legendre, 1998). In ecosystem

management the River Invertebrate Prediction

And Classification System (RIVPACS) was devel-
oped for assessing the biological quality of fresh

waters. The RIVPACS and its derivatives are the

primary ecological assessment analysis techniques

for Great Britain (Wright et al., 1993) and

Australia (Norris, 1995). They are empirical (sta-

tistical) models that predict the aquatic macro-

invertebrate fauna that would be expected to occur

at a site in the absence of environmental stress
(Barbour et al., 1999; Coysh et al., 2000).

The models are based on a stepwise progression

of multivariate and univariate analyzes. With these

non-linear and complex ecological data, however,

non-linear analyzing methods should be preferred

(Blayo and Demartines, 1991). One of these

methods is artificial neural networks (ANNs),

which are versatile tools to extract information
out of complex data, and which could be effec-

tively applicable to classification and association.

In ecological modelling, ANNs have been im-

plemented in diverse aspects (Lek and Guégan,

1999, 2000): classifying groups (Chon et al., 1996;

Levine et al., 1996), patterning complex relation-

ships (Lek et al., 1996; Tuma et al., 1996),

predicting population and community develop-
ment (Tan and Smeins, 1996; Recknagel et al.,

1997; Chon et al., 2000), and modelling habitat

suitability (Paruelo and Tomasel, 1997; Özesmi

and Özesmi, 1999). Most of these studies used one

of two ANNs: a self-organizing map (SOM)

(Kohonen, 1982) for clustering input vectors, and

a backpropagation algorithm (BP) (Rumelhart et

al., 1986) for predicting biotic attributes with
biotic and/or abiotic variables.

Explaining the variation of ecological data can

be considered in two steps: ordination methods to

summarize the variability of the data as a first step,

and exploration for possible relationships between

biological and environment variables as a second

step (Jongman et al., 1995). From this point of

view, this study focuses on practical approaches to
present how two different ANNs, SOM and BP,

can be applied to understand complex, non-linear

ecological data.

2. Materials and methods

2.1. Artificial neural networks (ANNs)

In this study we used two different ANNs: a self-

organizing map (SOM) (Kohonen, 1982, 2001), an

unsupervised neural network, and a BP (Rumel-

hart et al., 1986), a supervised neural network. The

SOM is an approximation to the probability

density function of the input data, and a method
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for clustering, visualization, and abstraction, the
idea of which is to show the data set in another,

more usable, representation form (Kohonen,

2001). The BP is a mathematical algorithm to

extract relationships between explanatory and

response variables, and offers an effective ap-

proach to the computation of the gradients

(Kung, 1993).

We tried to pattern and to predict ecological
data following two steps, by using two different

ANNs (Fig. 1). First, the SOM as an ordination

method was applied to summarize the variability

of the data. Thus, sampling sites could be arranged

on the reduced dimensions, so that these arrange-

ments optically summarize the spatial variability

of their biological and environmental features. At

the second step of the analysis, the BP was used to
predict the arrangements obtained with environ-

mental variables, and to know the characteristics

of their biological attributes.

2.1.1. Self-organizing map (SOM)

2.1.1.1. SOM algorithm. At first the biological

data were used to train the SOM, When an input

vectors x is sent through the network, each neuron

k of the network computes the distance between

the weight vector w and the input vector x, The

output layer consists of D output neurons which

usually are arranged into a two dimensional grid in

order to better visualization. The best arrangement

for the output layer is a hexagonal lattice, because

it does not favor horizontal and vertical directions

as much as the rectangular array (Kohonen, 2001).

Among all D output neurons, the best matching

unit (BMU), which has minimum distance between

weight and input vectors, is the winner. For the

BMU and its neighborhood neurons, the weight

vectors w are updated by the SOM learning rule.
The training is usually done in two phases: at

first a rough training for ordering with a large

neighborhood radius, and then a fine tuning with a

small radius. This results in training the network

to classify the input vectors by the weight vectors

they are closest to. The detailed algorithm of the

SOM can be found in Kohonen (1989, 2001) for

theoretical considerations, and Chon et al. (1996)

and Giraudel et al. (2000) for ecological applica-

tions.

2.1.1.2. Map quality measures. After the SOM has

been trained, it is important to know whether it

has been properly trained or not, because an

optimal map for the given input data should exist.

Although several map quality measures have been

proposed (Kohonen, 2001; Zupan et al., 1993;

Villman et al., 1994), the SOM quality is usually

measured with two evaluation criteria: resolution

and topology preservation. In this study, we first

computed a quantization error (Kohonen, 2001)

which is the average distance between each data

vector and its BMU for measuring map resolution.

Topographic error was also calculated. This error

represents the proportion of all data vectors for

which first and second BMUs are not adjacent for

the measurement of topology preservation (Kivi-

luoto, 1996). Thus, this error value is used as an

indicator of the accuracy of the mapping in the

preserving topology (Kohonen, 2001). The topo-

graphic error ot can be computed in the map as

follows (Kiviluoto, 1996):

Fig. 1. Schematic diagram of the modeling procedure. SOM

were applied to analyze ecological data sets in the first step,

then BP was used to predict biological attributes. The solid

arrow represents a direct relationship between modeling steps,

while the dotted arrow displays indirect relationships.
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ot�
1

N

XN

k�1

u(xk) (1)

where N is the number of input samples, and u (xk)
is 1 if the first and second BMUs of xk are not next

to each other, otherwise u (xk ) is 0.

2.1.1.3. Map size. The number of output neurons

(i.e. the map size) is important to detect the

deviation of the data. If the map size is too small,

it might not explain some important differences

that should be detected. Conversely, if the map

size is too big, the differences are too small
(Wilppu, 1997). Thus, we trained the network

with different map sizes, and chose the optimum

map size based on the minimum values for

quantization and topographic errors.

2.1.1.4. Clustering SOM units. On the trained

SOM map, it is difficult to distinguish subsets

because there are still no boundaries between

possible clusters. Therefore, it is necessary to

subdivide the map into different groups according
to the similarity of the weight vectors of the

neurons. We used two methods to divide the

trained SOM units into several subgroups. First,

the unified distance matrix algorithm (U -matrix;

Ultsch and Siemon, 1990; Ultsch, 1993) was

applied. The U -matrix calculates distances be-

tween neighboring map units, and these distances

can be visualized to represent clusters using a grey
scale display on the map (Kohonen, 2001). A k -

means method (Jain and Dubes, 1988) also was

applied to the trained SOM map to confirm the

subgroups divided by the U -matrix. To select the

best patterning among partitions with different

numbers of clusters, the Davies�/Bouldin index

(DBI; Davies and Bouldin, 1979), a relative index

of cluster validity, was calculated. The smaller
DBI, the better the clustering. Small values of DBI

occur for a solution with low variance within

clusters and high variance between clusters. There-

fore, a choice is made concerning the number of

clusters at which this index attains its minimum

value (Hruschka and Natter, 1999).

2.1.1.5. Component planes. During the learning
process, neurons that are topographically close in

the array will activate each other to learn some-

thing from the same input vector. This results in a

smoothing effect on the weight vectors of neurons

(Kohonen, 2001). Thus, these weight vectors tend

to approximate the probability density function of

the input vector. Therefore, the visualization of

elements of these vectors for different input
variables is convenient to understand the contri-

bution of each input variable with respect to the

clusters on the trained SOM. This visualization

method is related to a principal component

analysis (PCA), and more directly describes the

discriminatory powers of input variables in map-

ping (Kohonen, 2001). Therefore, to analyze the

contribution of variables to cluster structures of
the trained SOM, each input variable (component)

calculated during the training process was visua-

lized in each neuron on the trained SOM map in

grey scale. Based on the component planes, the

correlation coefficients were calculated between

component pairs in both observed and calculated

data.

2.1.1.6. Relationships between biological and

environmental variables. It is necessary to under-

stand the relationships between biological and
environmental variables, because natural distribu-

tions of organisms are primarily determined by

their environment (Huntley, 1999). To understand

relationships between biological and environmen-

tal variables, we tried to introduce environmental

variables into the SOM trained with biological

variables. At first, we submitted each environmen-

tal variable to the trained SOM, and then we
calculated the mean value (Ev) of each environ-

mental variable in each output neuron of the

trained SOM. The mean value can be computed

as follows:

Ev�
1

n

Xn

i�1

ei (2)

where n is the number of input vectors assigned

(e.g. sampling sites) to each output neuron of the

trained SOM, and ei is the value of each environ-

mental variable of input vector i . If the output
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neuron was not occupied by input vectors, the

value was replaced with the mean value of

neighboring neurons. These mean values of envir-

onmental variables assigned on the SOM map

were visualized in grey scale, and then compared

with maps of sampling sites as well as biological

attributes.

2.1.2. Backpropagation algorithm (BP)

In order to pattern relationships between biolo-

gical and environmental variables, the BP was

used as a non-linear predictor (Haykin, 1994). The

BP is most popular and more used than other

neural network types in various fields of investiga-

tion. This is a supervised learning algorithm and

an interactive algorithm designed to minimize the

mean square error between the computed output

of the network and the desired output. The

network normally consists of three layers: input,

hidden, and output layers. It requires input vectors

in the input layer, as well as target (or desired)

values in the output layer corresponding to each

input vector. The learning algorithm of the BP is

very popular and common, and the detailed

description will not be given here. A description

of the learning rules can be found, for instance, in

Rumelhart et al. (1986), Kung (1993), Lek and

Guégan (2000).

After the learning process, a dataset not used in

the training process was applied to test the

reliability of the trained BP. The correlation

coefficients were calculated to verify the predict-

ability of the network in both learning and testing

phases. A sensitivity analysis was carried out to

evaluate the contribution of each input variable to

the neural network. Sensitivity analysis is a

method to study the behavior of a model, and to

assess the importance of each input variable on the

values of the output variable of the model (Rcotti

and Zio, 1999; Salvador et al., 2001). There are

many ways to perform the sensitivity analysis

(Helton, 1993; Zurada et al., 1994; Hamby, 1994;

Yao et al., 1998). In this study, random values

ranging from 9/10 to 9/50% were added to each

input variable (Jørgensen, 1994; Opara et al., 1999;

Scardi and Harding, 1999).

2.2. Ecological data

From the database of the Center for Research in

Aquatic Ecosystems in Toulouse (CESAC) labora-

tory, 155 sampling sites were selected to implement

the model. The sampling sites belonged to the

Adour�/Garonne stream system (116 000 km2,

South-western France), and ranged from 10 to

2500 m a.s.l., i.e. representing high Pyrenean
mountains to plain areas. They were characterized

using four environmental variables: elevation a.s.l.

(m), stream order, distance from the source (km),

and maximum water temperature (8C) in summer.

These variables were chosen because they relate

the location of sampling sites within the stream

system without a priori consideration of any

disturbance, and they are easy to collect using a
geographical map and a min�/max thermometer.

We focused on four insect orders, i.e. Ephemer-

optera, Plecoptera, Trichoptera, and Coleoptera

(EPTC), which are commonly identified at the

species level in freshwater studies. The EPTC

richness (i.e. the number of species occurring in a

given area) was thus recorded at each sampling

site. The EPTC richness was correlated to the
overall macroinvertebrate richness in Adour�/Gar-

onne streams according to a highly significant

linear relationship (r�/0.91, P B/0.01,

see Céréghino et al., 2001), and was thus a good

estimator of the overall community richness. A

detailed description of these ecological data was

also given in Cayrou et al. (2000), Céréghino et al.

(2001).
In the modelling process with ANNs, the SOM

was first applied to classify the sampling sites

according to EPTC richness. The network con-

sisted of an input layer with four input neurons,

and an output layer on a two-dimensional hex-

agonal lattice. The data were proportionally

normalized between 0 and 1 in the range of the

minimum and maximum values.
To predict overall EPTC richness as output, the

four environmental variables (i.e. stream order,

elevation, distance from the source, and maximum

water temperature) were used as input for the BP.

The data sets of input and output were propor-

tionally normalized between 0 and 1 in the range

of the minimum and maximum values. One

Y.-S. Park et al. / Ecological Modelling 160 (2003) 265�/280 269



hundred and thirty sampling sites out of 155 were
used to train the network, whereas the remaining

sites were used to test the feasibility of the trained

BP.

3. Results and discussion

3.1. EPTC richness patterns

3.1.1. Map qualify measures and map size

Two types of quantities evaluated the quality of
the trained SOM: quantization and topographic

errors. The error values were computed at differ-

ent map sizes (Table 1). Based on these error

values the grid (map) size was selected as 140

(14�/10) units. The trained SOM had a quantiza-

tion error of 0.11, and a topographic error of 0.01.

The result showed that only one pair of the first-

and second-BMUs was not adjacent in the trained
hexagonal map, so the SOM was smoothly trained

in topology.

It is clear that an optimal map exists for a given

input dataset. However, there are no rules to

define the optimal map size. In this study we

used two measures to evaluate the quality of the

trained maps. Another possibility is to use differ-

ent architectures like the ‘growing self-organizing
maps’ (Fritzke, 1996). The basic idea is to estimate

correct initial values for a map that has plenty of

units (Kohonen, 2001).

The size of the SOM map has a strong influence

on the quality of the classification. Increasing the

map size brings more resolution into the mapping.

The stiffness and smoothness of the map can be

controlled independently of the map size by
changing the final width of the neighborhood

radius in the learning process. Setting the number

of nodes approximately equal to the number of the

input samples seems to be a useful rule-of-thumb

for many applications when the data sets are
relatively small (Kaski, 1997). However, attention

should be paid to overfitting problems when a

large map size is used. This may happen when the

number of map units is as large or larger than the

number of training samples. For the form of the

array, the hexagonal lattice is to be preferred

because it does not favor horizontal and vertical

directions as much as rectangular array, and the
shape of the grid (or the edges of the array) ought

to be rectangular rather than square because the

elastic network formed of the weight vectors must

be oriented along with probability density function

and be stabilized in the learning process (Koho-

nen, 2001).

3.1.2. Clustering sampling sites and contribution of

input variables

After training the SOM with EPTC richness, the

U -matrix algorithm was applied to cluster the
units in the trained map. The results showed

boundaries for four large clusters on the map,

although that was at first not clear. The k -means

also showed four clear clusters based on the

minimum DBI (DBI�/0.91) (Table 2). The clus-

ters defined by the U -matrix and k -means meth-

ods agreed with each other. Thus, sampling sites

were classified into four groups (I�/IV) on the
trained SOM map (Fig. 2). The obtained groups

corresponded to geographic regions of the drai-

nage basin.

Fig. 3 displays component planes of each EPTC

richness in each neuron on the trained map in grey

scale. Dark represents high richness, while light

reveals low richness. The map units in the lower

areas of the SOM map showed the highest richness
values for Ephemeroptera, Trichoptera and Co-

leoptera. The units on the lower left corner showed

the highest richness for Plecoptera, whereas the

units on the upper right corner corresponded to

Table 1

Map quality measures at different map sizes of the trained SOM

Map size 40 56 81 120 140 160 200

Quantization error 0.17 0.15 0.14 0.12 0.11 0.11 0.10

Topographic error 0.01 0.01 0.03 0.02 0.01 0.02 0.04
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the lowest richness values. According to these

characteristics of distribution of EPTC richness

on the map, sampling sites in the lower areas of the

SOM map had the highest EPTC richness, whereas

sampling sites in the upper areas had the lowest

richness. Sites in cluster 1 had high EPTC richness,

Table 2

Davies�/Bouldin index (DBI) of k-means clustering at different number of clusters on the trained SOM

Number of clusters 2 3 4 5 6 7

DBI 0.97 1.10 0.91 1.31 1.10 1.14

Fig. 2. Clustering of the trained SOM units. The U -matrix and k-means methods were applied to set boundaries on the SOM map.

The Latin numbers (I�/IV) in different grey scales display clusters, and the codes in each unit of the map represent the sampling sites,

and can be referred to the map of Cayrou et al. (2000).
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while sites in cluster IV had the lowest EPTC

richness. Clusters II and III were separated by the

species richness of Plecoptera. Sites in cluster II

had high Plecoptera richness with moderate rich-

ness for other insects. Sites in cluster III had low

numbers of Plecoptera species, along with moder-

ate richness for other taxa.

Fig. 4 displays the relationships among EPTC

richness variables in both observed and calculated

values in the trained SOM. The scattergrams in the

upper triangle of the figure show the relationships

among taxonomic groups in observed data, while

the plots on the lower triangle in calculated data.

Species richness relationships were highly signifi-

cant for both observed and estimated data among

Ephemeroptera, Trichoptera and Coleoptera, but

the correlation was relatively low when Plecoptera

were plotted against other insect orders in both

observed and calculated data sets. The correlation

coefficients were relatively higher in calculated

data than in observed data. The bar charts on

the diagonal represent the histograms of observed

and calculated values of each taxonomic group:
black for the input data and grey for calculated

output data. There were significantly high correla-

tions between observed and estimated (i.e. calcu-

lated from the output neurons of SOM) EPT

richness in each taxonomic group (r �/0.65, P B/

0.05), while the correlation was low in Coleoptera

(r�/0.38, P �/0.1).

U -matfix and k -means clustering methods were
applied to separate subsets on the trained SOM in

this study. However, other methods can be con-

sidered, because each method has advantages and

disadvantages for clustering. Sometimes it is not

easy to detect clear boundaries on the grey scale

map of the U -matrix, although this method has

become popular recently (Kohonen, 2001). To

subdivide the trained SOM map into several
groups, the fuzzy c-means (FCM, Bezdek, 1981;

Giraudel et al., 2000) and the hierarchical agglom-

erative clustering and partitive clustering using k -

means (Vesanto and Alhoniemi, 2000) have been

also applied. Vesanto and Alhoniemi (2000) re-

ported that agglomerative clustering and partitive

clustering showed clear clusters, although the U -

matrix could not find clear boundaries on the
trained SOM. Thus, when we separate subgroups

after training the SOM, it is necessary to compare

several clustering methods if there are no clear

clusters

3.1.3. Relationships between biological and

environmental variables

The SOM has shown its high performance for

visualization and abstraction for our non-linear
and complex ecological data. However, it was not

easy to include environmental variables in the

SOM trained with biological variables. Thus, we

suggest a method to introduce (or include) envir-

onmental variables into the SOM map trained

with biological variables, in order to understand

their effects on biological variables and on the

classification of sampling sites in the trained SOM.
To do this, the mean value of each environmental

variable was calculated in each output neuron of

the trained SOM, then each variable was visua-

lized on the trained SOM map (Fig. 5). Dark

represents high values, while light represents low

values. The areas with the highest values were

Fig. 3. Visualization of EPTC richness calculated in the trained

SOM in grey scale. The values of EPTC richness were

calculated during the learning process. Dark represents high

value richness, while light is low value richness. The area with

the highest values is circled with dotted line. COLE, Coleop-

tera; EPHE, Ephemeroptera, PLEC, Plecoptera; and TRIC,

Trichoptera.
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marked with a circle for each variable. Environ-

mental variables showed gradient distributions on

the SOM map. Stream order increased from the

left to the right side of the map. Elevation was the

highest in upper left area, and showed the clearest

gradient among environmental variables. Distance

from the source was lower in left areas, and higher

in right areas of the SOM map. Maximum water

temperature did not show a clear gradient in its

distribution on the map. These results revealed

that elevation was the most important factor in

patterning sampling sites according to EPTC

richness, while the effect of the maximum water

temperature was the lowest.

At this point, we have three types of parameters

(sampling sites, biological and environmental

data) on the trained SOM map. Using these

data, we superimposed each parameter on the

same SOM map (Fig. 6). We can compare the

relationships among clusters (and/or sampling

sites), EPTC richness, and environmental vari-

ables. Sampling sites on the lower area of the SOM

map have the highest species richness (Fig. 5). Sites

in cluster I, which was characterized by high EPTC

richness, belonged to the 1st�/2nd order streams,

sites in cluster IV having the lowest EPTC richness

were located at high elevations. Sites in cluster II

had high Plecoptera richness with moderate rich-

ness for other insects (Ossau valley, stream order

3�/4). Sites in cluster III had low numbers of

Plecoptera species with moderate richness for

other taxa, and belonged to the 5th�/7th order

streams. Furthermore, we can see that the dis-

tribution of Plecoptera was affected by the eleva-

tion as well as stream order and the distance from

the source. Coleoptera were affected by stream

order and distance from the source, and Ephemer-

optera and Trichoptera were also related to stream

Fig. 4. Relationships among input variables in observed and calculated data in the trained SOM, The bar charts on the diagonal

represent the proportion (%) of the sampling sites of observed and calculated values for each taxonomic group: black for the input and

grey for calculated output. Acronyms of taxa are given in Fig. 3.

Y.-S. Park et al. / Ecological Modelling 160 (2003) 265�/280 273



order and distance from the source. Although the

SOM visualization is an indirect gradient analysis

like a PCA (ter Braak, 1995), the analysing

technique presented above showed the relation-

ships between sampling sites, environmental vari-

ables, and biological variables. Thus, this

approach is a much more practical tool to analyze

the relationships between variables than general

indirect gradient analysis.

When environmental variables are projected on

the trained SOM, the distribution gradient of each

variable is not clear if its variation is large,

especially in relatively large maps. In this case,

reducing the map size can help to find the gradient

of variable distribution more clearly. On the SOM

map, a clear gradient in the distribution of a

variable represents a high contribution to the

classification. If there is no clear gradient, the

effect of the variable may be relatively low. In

further studies, it is necessary to quantify both the

gradients in the distribution of each variable, and

relationships between biological and environmen-

tal variables.

Ordination and cluster analysis are often used in

the early exploratory phase of an ecological

Fig. 5. Visualization of environmental variables and overall EPTC richness on the trained SOM map. The mean value of each variable

was calculated in each output neuron of the trained SOM. Dark represents a high value, while light is low. The areas with the highest

values are marked with a dotted circle.

Fig. 6. Comparison of relationships among clusters (and/or

sampling sites), EPTC richness, and environmental variables.

Each parameter from Figs. 2, 3 and 5 is overlaid on the trained

SOM map. The symbols COLE, EPHE, PLEC, and TRIC were

explained in Fig. 3.
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investigation, and the results may suggest relation-
ships that deserve to be studied in more detail in

subsequent research (Jongman et al., 1995),

whereas a regression analysis could be helpful to

study more specific questions in the later phases of

research. This order in the analysis procedure*/

ordination and/or cluster analysis first, and regres-

sion analysis later*/has been also used in this

study.

3.2. Prediction of EPTC richness

The SOM showed how the EPTC richness was

highly correlated with environmental variables.

Thus, the BP was also applied to predict EPTC

richness as an output variable, using the four
environmental variables as input. The convergence

of the learning process was generally reached after

3000 iterations with a sum of square error of 1.91.

The trained BP showed a high accuracy in

predicting the overall EPTC richness on the basis

of the environmental variables (r�/0.91, P B/

0.001; Fig. 7a). There was, however, an under-

estimation of some high EPTC richness and an
overestimation of around 30 EPTC richness va-

lues. The trained BP was tested with new data not

used during the training phase, and the accuracy of

the predictions was also very high (r�/0.61, P B/

0.01; Fig. 7).

Residuals of the model have an average of 0.013

and a standard deviation of 7.83. The residuals

were well distributed near the horizontal line

representing the residual mean (r�/�/0.01, P �/

0.5; Fig. 8). The histogram of residuals revealed

that most values were centered near zero. To test

the normality of model residuals, the statistical test

of Lilliefors (1967) was applied.

The test did not reject the null hypothesis that

the residuals are normally distributed (P�/0.2;

Fig. 8b). The relationships showed no obvious sign

of dependence of residuals, showing that the BP

fitted the data with no bias.

A sensitivity analysis was carried out to evaluate

the effect of each input variable to the network

adding small random values to each input vari-

able. To measure a response in output values,

mean square errors were calculated at different

levels of the perturbation of input variables. The

sensitivity analysis showed that elevation and

stream order provided the highest contributions

among the four input variables when predicting

EPTC richness, whereas maximum water tempera-

ture provided the lowest contribution (Fig. 9). This

is in agreement with the results of the ordination

based on the trained SOM (Figs. 3, 5 and 6).

Several methods were proposed to explain of the

contribution of variables in the ANN models.

These algorithms allow illustrating the role of

variables in ANN models. Among these algo-

rithms, we can classify in several categories using:

(i) the connection weights (Garson 1991; Goh

1995), (ii) the connection weights and a fictitious

Fig. 7. Scatter plots of correlations between observed and estimated (or predicted) values by the trained BP. The diagonal lines

represent perfect prediction values (predicted and observed values (a) learning, (b) testing.
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Fig. 8. Relationships between residuals and estimated values (a), and histogram of residuals (b).

Fig. 9. Sensitivity analysis of the BP. Mean square error values were measured at different levels of pertubation of the input variables.
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input matrix considering a successive variation of
one input variable while the others are kept

constant at a fixed value (Lek et al., 1995, 1996),

(iii) the connection weights and a perturbation of

the input variables (Scardi and Harding, 1999),

and (iv) the partial derivatives of the output

according to the input variables using the connec-

tion weights of the ANN (Dimopoulos et al., 1995,

1999; see Gevrey et al. (2002) for details).
It is recognized that BP is able to make better

predictions than regression models (Lek et al.,

1996; Paruelo and Tomasel, 1997). However, there

are disadvantages with BP. One of them is that BP

cannot explain causalities in the network because

it provides a ‘black-box’ approach to describe the

relationships between input and output variables,

although a sensitivity analysis can be applied to
explain the contribution of input variables to

output variables. However, sometimes it is not

sufficient to explain the relationships between two

variable sets in terms of causality. The ordination

approach proposed in this study could be helpful

to explain the relationships between input and

output variables.

4. Conclusions

Two different neural networks, supervised and

unsupervised, have been applied to suggest prac-

tical approaches for understanding ecological

data. The SOM showed a high performance for

visualization and abstraction of ecological data.
The trained SOM efficiently classified sampling

sites according to gradients of input variables, and

displayed a distribution of each component (input

variable). The component planes helped to inter-

pret the contribution of each component to the

classification. Additionally, by introducing new

variables (i.e. environmental variables) not used in

its training phase, the SOM showed high perfor-
mance in analyzing the relationships among sam-

pling sites, biological variables and environmental

variables. This method could be used as a tool to

extract relationships between sampling sites, com-

munities, and environmental variables, although

the algorithm is theoretically an indirect gradient

analysis. However, it remains necessary to quan-
tify the relationships among variables.

After understanding the relationships between

biological and environmental variables using the

SOM, the BP, used as a nonlinear predictor,

showed high accuracy in predicting EPTC richness

on the basis of a set of four environmental

variables. Thus, this prediction could be a valuable

tool to assess disturbances in given areas: by
knowing what the EPTC richness should be, we

can determine the degree to which disturbances

have altered it.

Finally, approaches using two different ANNs

(first, understanding data sets using visualization

and abstraction methods with SOM and second,

prediction for target variables with BP) showed

that they could take into account the variability of
ecological data efficiently. Therefore, this proce-

dure could be preferred when ecological modeling

is applied to understand non-linear and complex

ecological data.
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