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Abstract

Fish assemblages are reckoned as indicators of aquatic ecosystem health, which has become a key feature in water

quality management. Under this context, guilds of fish are useful for both understanding aquatic community ecology

and for giving sound advice to decision makers by means of metrics for indices of biotic integrity. Artificial neural

networks have proved useful in modelling fish in rivers and lakes. Hence, this paper presents a back-propagation

network (BPN) for modelling fish guilds composition, and to examine the contribution of five environmental

descriptors in explaining this composition in the Garonne basin, south west France. We employed presence�/absence

data and five variables: altitude, distance from the river source, surface of catchment area, annual mean water

temperature, and annual mean water flow. We found that BPN performed better for predicting species richness of

guilds than multiple regression models. The standardised determination coefficient of observed values against estimated

values was used to characterise model performance; it varied between 0.55 and 0.82. Some models showed high

variability which was presumably due to spatial heterogeneity, temporal variability or sampling uncertainty. Surface of

catchment area and annual mean water flow were the most important environmental descriptors of guilds composition.

Both variables imply human influence (i.e. land-use and flow regulation) on certain species which are of interest to

environmental managers. Thus, predicting guilds composition with a BPN from landscape variables may be a first step

to assess metrics for water quality indices in the Garonne basin.
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1. Introduction

Artificial neural networks (ANNs) have demon-

strated their utility in areas that are important to

environmental decision-making, like: pattern re-
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cognition, learning, classification, generalization,
abstraction, non-linearity, and interpretation of

incomplete or noisy data (Lek et al., 1996b; Lein,

1997; Lek et al., 2000). In the case of freshwater

environmental management, a greater worldwide

concern is being given to aquatic ecosystem health

as a key feature of water quality. This health can

be reflected in organisms such as fish, which are

considered as indices of aquatic quality (Karr et
al., 1986; Angermeier and Winston, 1999; Ober-

dorff et al., 2001b). Angermeier and Schlosser

(1995) point out that, although a long-term goal

for fish ecologists should be the understanding of

communities and populations dynamics, the study

of fish assemblages is a good short-term tool for

decision makers. Thus, in order to gain an insight

into fish assemblage structure, we use ANNs for
estimating groups of guilds which we reckon as a

practical approach for modelling fish commu-

nities, and for giving advice to environmental

decision-makers, like in the construction of metrics

for indices of biotic integrity (IBI) (Karr et al.,

1986).

Abundances or presence of fish fauna have been

estimated by ANNs in lotic systems (Baran et al.,
1996; Lek et al., 1996a; Mastrorillo et al., 1997,

1998; Guégan et al., 1998; Brosse et al., 2001) and

in lentic systems (Brosse et al., 1999a,b,c; Laë et

al., 1999). Hence, in this paper we present an

application of a back-propagation network (BPN;

a supervised ANN) for modelling riverine fish

assemblages in south west France with two objec-

tives: (a) to predict species richness of fish guilds;
and (b) to test the contribution of environmental

variables for explaining guilds structure.We chose

two groups of guilds: (a) by their origin*/in

native, diadromous, and introduced species; and

(b) by their trophic structure*/in planktivore,

benthivore, nectivore, and multivore species. The

latter comprised species with more than one habit

(e.g. benthivore and nectivore). We considered
these guilds of interest to resource managers due

to their implications in community ecology and for

landscape planning (Jackson et al., 2001). For

example, introduced species may lead to fauna

homogenisation (Rahel, 2000) or may have socio-

economic repercussions (Bartley and Subasinghe,

1996), leading to conservation concerns on native

species (Angermeier and Schlosser, 1995). Benthi-
vore fish are considered as good indicators of

water quality in Maryland rivers (Scott and Hall,

1997), as diadromous species are in estuaries and

large rivers (McDowall and Taylor, 2000). Necti-

vore fish (i.e. piscivores) have also special interest

to conservation (Schlosser, 1991) and for sport-

fishing (Oberdorff and Hughes, 1992).

2. Methods

2.1. Data

The data were obtained from the fish database

of the Aquatic Environment Team, School of

Agronomy at Toulouse (ENSAT), France. The
main sampling techniques were electro-fishing by

wading in small rivers, and electro-seining and

seining in larger rivers. According to Seegert

(2000), these methods allow an efficient assessment

of species richness. We chose a subset from this

database with 154 sampling sites for which collec-

tion of species richness was the objective of the

sampling, and were spread over the whole Gar-
onne basin (Fig. 1). For these sampling sites, we

estimated altitude (m-ALT), distance from the

river source (km-DIST), and surface of catchment

area (km2-SURF) with cartographic maps

(scale�/1:25 000). Besides, we coupled these data

with the 1990�/1996 annual mean water tempera-

ture (8C-TEMP) and annual mean water flow (m3/

s-FLOW) obtained from the Regional Water
Agency database. Since variables had different

units, they were standardised by autoscaling to

have zero means and unit standard deviations. The

recorded species were classified in the groups of

guilds above mentioned according to the informa-

tion of Keith and Allardi (2001).

2.2. Modelling technique

A former study in the Garonne basin (Mastror-

illo et al., 1998) demonstrated that fish species

richness can be predicted by means of a BPN using

three explanatory variables: altitude, distance from

the river source, and surface of catchment area.

Our study went further by looking into guild
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structure and adding two critical variables to fish

communities: water temperature and water flow

(Schlosser, 1990).

The construction of the BPN model was based

on Lek et al. (1996b, 2000) and made in a

MATLAB† platform. The BPN structure was

made up of a three-layered feed-forward network

(5:5:1) with information flowing from the input

layer to the output layer. The input nodes com-

prised the environmental variables and the output

node corresponded to the species richness of each

guild. The information flow was represented by

five changing weights, and an additional constant

weight (value�/1) acting as the bias. A typical

sigmoid function was used as the transfer function.

Training was carried out by changing the weights

according to the prediction errors. Each calcula-

tion of the weights is called an epoch or iteration.

Epochs were repeated until the generalisation error

reached the global minimum (i.e. early-stopping).

This was done for avoiding overfitting of the BPN.

As the number of observations was not enough

for splitting the data into training and testing sets,

the BPN was tested instead with the leave-one-out

method (Kohavi, 1995). It consists of considering

each observation (i.e. a sampling site) as a unique

piece of information, repeating the estimation n�/1

times. The leave-one-out method is an ANN

testing technique frequently employed in ecology

(Lek et al., 2000).

The contribution of explanatory variables was

calculated by the partial derivatives method pro-

posed by Dimopoulos et al. (1995). This sensitivity

analysis modifies several inputs (i.e. the environ-

mental variables) to look at the variation of the

outputs (i.e. guild structure) by means of the

Jacobian matrix of the activation function. Thus,

the degree of influence of each variable with

respect to the activation threshold can be exam-

ined.

The modelling was carried out for each of the

seven guild data sets. To test the stability of the

predictions, each model was repeated 10 times with

an initial set of random weights (Kohavi, 1995).
Finally, in order to have an idea of the classical

modelling technique, we applied multiple regres-

sion models to each guild. The performance of

each model was verified with the standardised

Fig. 1. Sampling sites in the Garonne basin, south west France. The main channel of the Garonne basin is indicated with bold line.
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determination coefficient of observed values
against estimated values.

3. Results

We performed a predictive model of species

richness and determined the contribution of en-

vironmental variables for each guild. Table 1

shows the standardised determination coefficients
(r2) and the standard errors (SE) of the relations

between observed and estimated values obtained

for both the BPN and the linear regressions (LR).

The BPN models showed higher predictability

than the regressions. On the basis of high r2 and

low SE, the best performance among BPN models

was obtained for the nectivore, diadromous, and

multivore guilds. In contrast, the poorest fit was
for primary species.

An environmental descriptor was regarded as

significant to the model when its contribution was

higher than the mean uniform distribution (i.e.

20%) of the five variables (Brosse et al., 2001). Fig.

2 shows the importance of contribution in percen-

tage for each descriptor after applying the partial

derivatives method. With the exception of second-
ary species, SURF turned out to be by far the most

important variable in explaining guilds composi-

tion. FLOW was frequently significant among

guilds, except for multivore and primary species.
ALT and DIST were less constant but highly

ranked in several cases: ALT for secondary

species, and DIST for benthivore and primary

species. In contrast, TEMP was not meaningful in

any BPN model.

The partial derivatives method allowed to find

the sensitivity of the BPN for each guild by

plotting environmental descriptors against their
partial derivatives. This is shown in Fig. 3 for

SURF, which resulted the most important variable

for most guilds. The values above the horizontal

axis mean a positive relationship and the values

below it represent a negative influence for the

corresponding values of SURF. We can see that

SURF has a positive effect on planktivore and

introduced species. For other guilds, its influence
was twofold: certain species seem favoured while

others do not.

With respect to LR, the contribution of the

variables was considered according to their regres-

sion coefficients (Beta) (Table 2). The order in

decreasing importance of the variables was: DIST,

SURF, TEMP, ALT and FLOW for the regres-

sions. Contrary to the BPN models, TEMP was
more relevant and FLOW was the lowest ranked.

4. Discussion

4.1. Prediction of guilds composition

The use of BPN models for predicting fish

species richness in groups of guilds was better
than regressions. This was probably due to the

non-linearity of the relationships between vari-

ables (Lek et al., 1996b). Between 55 (for the guild

of primary species) and 82% (guild of introduced

species) of the variance was explained with the

BPN models. This is comparable to the works of

Schleiter et al. (1999), Mastrorillo et al. (1998).

However, the predictions showed high variabil-
ity in several guilds for which the SE were rather

high (Table 1). These high variations were more

evident with the guilds of primary (SE�/1.81),

benthivore (1.56), and introduced species (1.21).

The same happened with the regression models,

reflecting perhaps the fact that species included in

Table 1

Standardised correlation coefficients (r2) and SE of the relations

between observed and estimated values for each guild

Guilds BPN MR

r2 SE r2 SE

Trophic

Benthivore 0.74 1.56 0.64 1.84

Multivore 0.63 0.48 0.33 0.65

Nectivore 0.80 0.43 0.56 0.64

Planktivore 0.69 0.97 0.55 1.18

Origin

Diadromous 0.80 0.58 0.67 0.74

Introduced 0.82 1.21 0.72 1.53

Native 0.55 1.81 0.36 2.17

The first two columns display the values obtained by the

leave-one-out method of the BPN, and the left columns show

the results for the multiple regressions (MR).
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Fig. 2. Contribution of explanatory variables (percentage) for each guild. The dotted line represents the significance level (i.e. 20%).

Graphs on the left correspond to trophic guilds and on the right to origin guilds. The environmental variables are: altitude (ALT),

distance to source (DIST), surface of catchment area (SURF), mean annual water temperature (TEMP), and mean annual water flow

(FLOW).
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those guilds are more widely distributed, occupy-

ing a diverse range of habitats in the Garonne

basin (Keith and Allardi, 2001). In contrast, the

BPN models for secondary and nectivore species

gave better fits (Table 1). These species have a

more restricted distribution, dwelling in the larger

streches closer to estuaries or large pools. This fact

may lead both BPN and regression models to lose

certain power of generalisation when trying to

predict species richness within heterogeneous ha-

bitats. Schlosser (1990), Paller (1994) demon-

strated that there are relevant differences in fish

assemblages between upstream and downstream

reaches, suggesting the existence of different phy-

siographic regions or source/sink areas within the

basin (Angermeier and Winston, 1999; Smogor

and Angermeier, 2001). The natural variability of

fish assemblages in rivers*/not taken into account

in the present study*/could also affect the accu-

racy of the predictions (Oberdorff et al., 2001a).

Another point relates to the nature of the data.

Since surveys were carried out by different teams

and consequently with unequal fishing effort,

some bias may be present in the sampling data

set. Nevertheless, the objective of these surveys

was the collection of total species richness and, as

recommended by Seegert (2000), it was carried out

with different fishing gears for having a good

estimation of species richness. A loss of accuracy

may be another source of uncertainty in our results

since we dealt with large spatial and temporal

scales of analysis (Angermeier, 1995). However, as

Fig. 3. Partial derivative values (d-SURF) for the model sensitivity to surface of catchment area (SURF). The first four graphs

correspond to trophic guilds and the two below to origin guilds. The graph corresponding to diadromous species is not shown because

SURF was not significant for this guild.
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Poff and Allan (1995) demonstrated, ecological

hypothesis may be examined by using data col-

lected in this way.

4.2. Contribution of environmental variables

The significant variables which explained species

composition of guilds with the BPN were coin-

cident with the findings of Oberdorff et al. (1995).

They found that surface of catchment area and

mean annual river discharge were the most im-

portant factors influencing global fish species

richness. However, a factor not included in our

analysis*/energy availability*/may also play an
important role on freshwater fish assemblages

composition (Guégan et al., 1998). Our results

were as well congruent with landscape theory,

which relates components of the surrounding

landscape with the functioning of lotic systems

(Schlosser, 1991; Angermeier and Schlosser, 1995;

Schlosser, 1995). Although no single environmen-
tal descriptor has the explanatory power to

account for fish community structure, Angermeier

and Winston (1999) noted that surface of catch-

ment or drainage area (i.e. SURF) could be

broadly useful in explaining variation among

aquatic communities. We found SURF as the

most important descriptor in explaining fish guilds

in the Garonne basin, except for secondary species.
The latter could be explained on the basis that

these fish migrate from the sea into freshwater and

they remain in certain specific areas of large rivers.

For them, ALT and FLOW were more relevant.

Taking into account values close to 20% (i.e.

nectivore and introduced guilds), the second most

influential variable was FLOW which was also

consistently significant among guilds (Fig. 2). This
variable involves natural drastic changes in head-

water streams and more stable conditions in

downstream areas (Schlosser, 1995). Nevertheless,

water flow regulation does play a role in fish

community structure (Bain and Finn, 1988; Ober-

dorff et al., 2001a). Physical barriers such as weirs,

dams and flood-control structures are a crucial

factor on fish communities. Schlosser (1990)
indicates that indirect effects on fish assemblages

like alteration of habitat, nutrients, energy and

food, and direct effects such as reduction of larvae

survival, are a consequence of flow regulation in

rivers.

The third place of explanatory power, corre-

sponding to ALT and DIST, was a standard

outcome for explaining fish assemblage composi-
tion in rivers (Wooton, 1991). TEMP instead was

not meaningful in any BPN model. Two concei-

vable explanations, not necessarily mutually ex-

clusive, may be explored. First, Reyjol et al. (2001)

related the highest temperature of the year to the

presence of salmonid fish and the coldest to

cyprinid species in the Garonne river. Thus,

extreme values would be more relevant than
mean annual temperature, as shown by Lyons

(1996), who found that fish community composi-

tion in Winsconsin was strongly associated with

summer temperature whereas altitude was not

meaningful. This leads to the second explanation:

ALT, SURF, and FLOW accounted for the effects

of TEMP in the BPN models.

Table 2

Regression coefficients (Beta), SE and P -values (P ) of the MR

models for each guild

Beta SE P Beta SE P

Benthivore Diadromous

ALT �/0.14 0.00 0.05 �/0.12 0.00 0.07

DIST 0.34 0.00 0.00 �/0.04 0.00 0.63

SURF 0.44 0.00 0.03 0.99 0.00 0.00

TEMP 0.26 0.12 0.00 0.00 0.05 0.97

FLOW �/0.25 0.01 0.22 �/0.20 0.00 0.29

Multivore Introduced

ALT 0.12 0.00 0.22 �/0.10 0.00 0.10

DIST 0.54 0.00 0.00 0.32 0.00 0.00

SURF �/0.57 0.00 0.04 0.23 0.00 0.19

TEMP 0.16 0.04 0.14 0.32 0.10 0.00

FLOW 0.56 0.00 0.04 0.03 0.01 0.84

Nectivore Native

ALT �/0.08 0.00 0.31 �/0.13 0.00 0.18

DIST 0.40 0.00 0.00 0.45 0.00 0.00

SURF 0.50 0.00 0.02 �/0.16 0.00 0.55

TEMP 0.01 0.04 0.88 0.21 0.14 0.05

FLOW �/0.14 0.00 0.54 0.01 0.01 0.96

Planktivore

ALT �/0.22 0.00 0.01

DIST 0.16 0.00 0.10

SURF 0.08 0.00 0.72

TEMP 0.28 0.08 0.00

FLOW 0.17 0.01 0.45
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A different circumstance was present in the
regression models as TEMP was among the most

significant variables and FLOW the lowest ranked

(Table 2). TEMP may have explained guilds

species richness, masking the effects of ALT and

FLOW. We reckon, though, that the poorer

predictive power of regression models (Table 1)

and their non-linear nature make them more

unreliable in comparison with BPN models. It
has to be noted that the role of descriptors may

vary across landscapes or scales (Angermeier and

Winston, 1999) and as shown here, among guilds

as well.

4.3. Environmental management issues

Following the landscape ecology concepts of

Schlosser (1991), SURF, as an integrative variable,
implies human influence on rivers due to agricul-

ture, deforestation, and urban and industrial

developments which take place in the Garonne

basin. These economic activities result in signifi-

cant alterations in fish assemblages affecting

primary productivity and nutrient concentration,

which have in turn a direct influence on trophic

guilds. For example, planktivore species seem to
be favoured by an increase of both drainage area

and of organic matter (Fig. 3). But organic matter

also means sedimentation, so that benthivore

species which are adapted to it may present greater

resistance (i.e. dots above the horizontal axis in

Fig. 3) than the ones which feed from intolerant

invertebrates or plants (dots below the horizontal

axis). Something similar may explain the pattern
of nectivore and multivore species which consume

planktivore or tolerant benthic species and have a

positive relationship with SURF, while for others

it is a rather adverse condition. Sedimentation in

rivers is strongly linked to agricultural practices.

For example, Harding et al. (1999) point out that

the degree of intensity in agriculture along a river

catchment is closely related to the impacts on the
lotic system, and Peterson (2000) shows that the

changes in land use that influence the structure

and dynamics of fish populations can also have

economic consequences. The fact that FLOW was

also a meaningful descriptor is of relevance to

decision-makers because it implies a growing

concern in environmental management of rivers
(Schlosser, 1990), including the preservation of

aquatic diversity (Angermeier and Schlosser,

1995).

Modelling guilds thus, may prove relevant for

IBI. Guilds are used for constructing metrics for

IBI which vary in conformity with regional

features. For example, Oberdorff and Hughes

(1992) modified the IBI for the Seine-Normandie
basin in Northern France. Thus, predicting guilds

composition from landscape variables may be a

first step to evaluate metrics for environmental

quality indices in the Garonne basin. As IBI

metrics are often subjectively assessed (Karr et

al., 1986), BPN models may give a quantitative

approximation for assessing IBI metrics. We have

to note, nevertheless, that the use of ANNs are just
a way to verify or assess IBI metrics, not to

substitute the expertise of biologists in construct-

ing an IBI (Karr et al., 1986).

A final word should be said about some of the

drawbacks involved in modelling ANNs. First,

there is a need for large databases to have better

predictions. Second, an independent data set for

validating the models is desirable. Both large
databases and independent data sets are often

difficult to find in ecological work. Thus, for small

data sets like the one used for this paper, the leave-

one-out method has to be carried out, a method

which may present sometimes high variance (Ko-

havi, 1995). Third, as probabilistic approaches

(Oberdorff et al., 2001b), ANNs are not able so

far to assess the elements of fish assemblages
which respond to human influences. Further

research is thus needed for modelling both ecolo-

gical and economic aspects in aquatic environ-

mental management (Peterson, 2000), taking into

account regional heterogeneity (Smogor and An-

germeier, 2001).

5. Conclusion

We predicted guilds composition by means of a

BPN, showing that the main descriptors of fish

assemblages in the Garonne basin might imply

human influence (i.e. land-use and flow regulation)

in rivers. However, the heterogeneous habits and
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spatial distribution of the species, along with
temporal variability and data uncertainty, led

presumably to a loss of prediction power for

BPN. We found nevertheless, that ANNs were

useful tool for gaining a first insight into fish

assemblages in the Garonne basin*/by means of

guilds and the factors that determine their compo-

sition. Furthermore, we provided an objective way

to assess or to evaluate IBI metrics, which may be
of interest to decision makers under the EU Water

Framework Directive. Further work thus, should

be directed in understanding ecological and human

processes within the studied region.
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Oberdorff, T., Guégan, J.F., Hugueny, B., 1995. Global scale

patterns of fish species richness in rivers. Ecography 18,

345�/352.

Oberdorff, T., Hugueny, B., Vigneron, T., 2001. Is assemblage

variability related to environmental variability? An answer

for riverine fish. Oikos 93, 419�/428.

Oberdorff, T., Pont, D., Hugueny, B., Chessel, D., 2001. A

probabilistic model characterizing fish assemblages of

French rivers: a framework for environmental assessment.

Freshwater Biol. 46, 399�/415.

Paller, M.H., 1994. Relationship between fish assemblage

structure and stream order in South Carolina coastal plain

streams. Trans. Am. Fish. Soc. 123, 150�/161.

Peterson, G., 2000. Political ecology and ecological resilience:

an integration of human and ecological dynamics. Ecol.

Econ. 35, 323�/336.

Poff, N.L., Allan, J.D., 1995. Functional organization of

stream fish assemblages in relation to hydrologic variability.

Ecology 76, 606�/627.

Rahel, F.J., 2000. Homogenization of fish faunas across the

United States. Science 288, 854�/856.

Schleiter, I.M., Borchardt, D., Wagner, R., Dapper, T.,

Schmidt, K.D., Schmidt, H.H., Werner, H., 1999. Model-

ling water quality, bioindication and population dynamics

in lotic ecosystems using neural networks. Ecol. Model. 120,

271�/286.

Schlosser, I.J., 1990. Environmental variation, life history

attributes, and community structure in stream fishes:

implications for environmental management and assess-

ment. Environ. Manag. 14, 621�/628.

Schlosser, I.J., 1991. Stream fish ecology: a landscape perspec-

tive. Bioscience 41, 704�/712.

Schlosser, I.J., 1995. Critical landscape attributes that influence

fish population dynamics in headwater streams. Hydrobio-

logia 303, 71�/81.

Scott, M.C., Hall, L.W., 1997. Fish assemblages as indicators of

environmental degradation in Maryland coastal plain

streams. Trans. Am. Fish. Soc. 126, 349�/360.

Seegert, G., 2000. Considerations regarding development of

index of biotic integrity metrics for large rivers. Environ.

Sci. Pol. 3, S99�/S106.

Smogor, R.A., Angermeier, P.L., 2001. Determining a regional

framework for assessing biotic integrity of Virginia streams.

Trans. Am. Fish. Soc. 130, 18�/35.

Wooton, R.J., 1991. Ecology of Teleost Fishes. Chapman and

Hall, London and New York, p. 404.

A.A. Ibarra et al. / Ecological Modelling 160 (2003) 281�/290290


	Modelling the factors that influence fish guilds composition using a back-propagation network: Assessment of metrics for indice
	Introduction
	Methods
	Data
	Modelling technique

	Results
	Discussion
	Prediction of guilds composition
	Contribution of environmental variables
	Environmental management issues

	Conclusion
	Acknowledgements
	References


